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Introduction
Medicinal plants have been successfully utilized topically 
and internally since ancient civilisations to treat various 
health concerns across cultures.1 Specifically, herbal 
compounds have been crucial in drug development, 
particularly in the treatment of cancer and infectious 
disorders.2 Phytochemicals refer to substances or 
chemicals derived from plants with unique structures 
and activities.3 These substances are vital for plant 
development, physiological activities, and defence.4 
Phytochemicals are abundant in vegetables, fruits, nuts, 
and seeds.5 Researching into the phytochemical family is 
an enormous undertaking due to its diversity. 

Reports have documented the antioxidant properties 
of phytochemicals.6 Some phytochemicals were reported 
to precisely modified signal transduction processes, 

including regulating antioxidant enzyme synthesis and 
promoting antioxidant effects in cells.7 In addition, the 
antioxidative properties of phytochemicals are essential 
in preventing neurological disorders, such as Alzheimer’s 
disease, by minimizing oxygen radicals, neutralizing 
carcinogenic metabolism, treating and impeding oxidative 
stress-induced chronic illnesses.8,9 Studies have also found 
that some phytochemicals prevented carcinogenesis, 
combat microbial infections, inhibited ATP synthase, and 
promoted skin regeneration.10,11 Advancements in plant 
extraction technology have turned phytochemicals into a 
more effective, safer and potentially vital components in 
the development of plant-based medicines.12 It is worth 
noting that approximately one-third of the drugs currently 
approved by the Food and Drug Administration (FDA) 
were derived from plants, underscoring the extensive 
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Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, 
including antioxidant and immunomodulatory properties. Recent studies have highlighted 
the potential of phytochemicals in targeting specific signalling pathways involved in cytokine 
storm, a life-threatening clinical condition resulting from excessive immune cell activation 
and oversupply of proinflammatory cytokines. Several studies have documented the 
immunomodulatory effects of phytochemicals on immune function, including their ability to 
regulate essential cellular and molecular interactions of immune system cells. This makes them a 
promising alternative for cytokine storm management, especially when combined with existing 
chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling 
pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These 
pathways play critical roles in the development and progression of cytokine storm, and targeting 
them with phytochemicals represents a promising strategy for controlling cytokine release and 
the subsequent inflammation. Studies have also investigated certain families of plant-related 
constituents and their potential immunomodulatory actions. In vivo and in vitro studies have 
reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in 
the management of cytokine storm syndrome. The collective data from previous studies suggest 
that phytochemicals represent a potentially functional source of cytokine storm treatment and 
promote further exploration of these compounds as immunomodulatory agents for suppressing 
specific signalling cascade responses. Overall, the previous research findings support the use 
of phytochemicals as a complementary approach in managing cytokine storm and improving 
patient outcomes.
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utilization and advantages of medicinal plants.13

Phytochemicals offer several benefits in modulating 
immune functions, including the maintenance of health 
through immune system support and the modulation of 
essential cellular and molecular interactions within the 
immune system. Cytokines are proteins produced by 
immune cells and play diverse biological roles. They play 
crucial roles in coordinating innate immune response by 
promoting local protective inflammation in acute phase 
responses.14 Cytokines are instrumental in initiating and 
regulating adaptive immune responses.15 Consequently, 
this review explores the valuable proof and evidence 
of phytochemicals in regulating immune responses, 
particularly in the context of cytokine storms.

Lymphocytes and macrophages are the primary 
sources of pro-inflammatory cytokines.16 In certain 
disease conditions, an excessive and uncontrolled 
systemic hyperinflammatory response can occur, which 
is characterized by elevated levels of pro-inflammatory 
cytokines such as interleukin-1 (IL-1), IL-6, interferons 
(INFs), and tumor necrosis factor-alpha (TNF-α). This 
phenomenon is known as a cytokine storm or cytokine 
release syndrome, which can lead to multiple organ 
dysfunction and development of acute respiratory distress 
syndrome (ARDS). 17-20 Cytokine activation is nevertheless 
beneficial in combating infections and malignancies but 
could be detrimental to the host if released excessively.

Cytokine storm is a rapidly developing and life-
threatening clinical condition. Historically, the term 
cytokine storm was invented by Ferrara et al21 in 
1993 to describe the clinical manifestation of graft-
versus-host disease. The phrase was later employed in 
numerous inflammatory diseases, including autoimmune 
conditions, organ transplantation, as well as in the context 
of cancer chimeric antigen receptor (CAR-T) cell therapy, 
which was related to the symptoms that followed the 
treatment of certain blood cancers,22 and. Currently, the 
term “cytokine storm” has gained increased attention, 
particularly in infectious diseases such as influenza, severe 
acute respiratory syndrome coronavirus (SARS-CoV), 
and coronavirus disease 2019 (COVID-19).22-28 This is 
due the implication of cytokine storm on the severity 
of these diseases.

The oversupply of inflammatory cytokines and 
unrestrained immune cell activation during cytokine storm 
could result in various pathological conditions, such as 
continuous fever, arthralgia, myalgia, capillary leak disorder, 
hypotension, hemophagocytic lymphohistiocytosis (HLH), 
ARDS, and multi-organ failure. 29

Clinical data from several studies on COVID-19 
infection have proven that cytokine storm is life-
threatening if untreated. The phenomenon is also one 
of the leading fatal causes of COVID-19.30-32 Numerous 
types of cytokines have been reported to contribute 
towards the pathogenesis of cytokine storms, thus a single 
drug treatment might be ineffective. Pathophysiological 

characteristics of cytokine storm could arise from the 
effects of pro-inflammatory cytokines, including TNF-α, 
IL-1, IL-4, IL-6, IL-7, IL-18, and IFN-γ.33 Accordingly, 
effective cytokine storm-reducing strategies may require 
the suppression of hyperinflammatory responses and 
modulation of the immune responses.34

Relevant keywords were employed in searching 
multiple data sources which included PubMed, 
SpringerLink, ScienceDirect, Google Scholar, and Scopus. 
In this review, the entire content of pertinent articles was 
acquired to enable the best literature-based resources 
accessibility. Furthermore, the data were selected based 
on the significance and strong understanding of the 
immunomodulating agent extracted from a plant source 
and their relationship with cytokine release immuno-
pathogenicity to provide an unbiased viewpoint.

The chemical nature of compounds with 
immunomodulatory effects
Over the years, the interest in natural-derived medicines, 
particularly phytochemicals, has grown tremendously, 
resulting in the identification of several active compounds 
currently categorized as alkaloids, polyphenols, 
glycosides, organosulfurs, saponin, carotenoids, and 
terpenes (see Figure 1).35,36 Immunomodulators are 
compounds that regulate or normalise pathophysiological 
processes.37 Researchers have been interested in the 
immunomodulatory properties of plant- derived 
phytochemical compounds. Consequently, research 
investigations on immunomodulatory phytochemicals 
and their active molecular constituents have led to the 
development of novel immunomodulatory agents to 
supplement existing chemotherapies. Nevertheless, most 
researches have focused on the discovery and investigation 
of specific families of plant-related chemicals and their 
potential immunomodulatory effects.38,39

Polyphenols
Polyphenols contain at least one aromatic ring with one 
or more hydroxyl groups, making them one of the largest 
groups of phytochemicals.40 Recent studies reported that 
phenolic compounds are associated with the positive 
effects of medicinal herbs.41 Phenolic acids, flavonoids, 
lignans, and stilbenes are the primary subclasses of 
polyphenols.42 In more details, based on the variations in 
their generic structure, particularly the degree of oxidation 
of the oxygenated heterocyclic C ring, flavonoids can be 
classified into different categories, including flavones, 
flavonols, flavanols, anthocyanidins, flavanones, and 
isoflavonoids (Figure 1).43

Studies on plant extracts and phytochemicals 
have demonstrated the anti-inflammatory effects of 
polyphenols in preventing the progression of chronic 
illnesses.44-47 Polyphenolics also possess superior 
antioxidant activities, while others such as flavonoids and 
flavonols demonstrated immunomodulatory actions.47-49 
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Flavanones are another group of polyphenols with an 
immunomodulatory activity that reduces the intensity of 
inflammatory responses. Moreover, flavanones extracted 
from Citrus by-products have been found to possess in 
vitro antioxidant and anti-inflammatory properties.50

Some polyphenols such as luteolin and quercetin affects 
the equilibrium between pro- and anti-inflammatory 
upregulations by suppressing IL-1β and TNF-α synthesis 
while promoting IL-10 release.51 Fouad et al52 investigated 
the immunomodulatory effects of naringenin in acute 
lung injury (ALI) model in rats. The findings of their study 
demonstrated that naringenin reduced the expression of 
TNF-α, nuclear factor kappa B (NF-κB), and inducible 
nitric oxide synthase (iNOS) and significantly diminished 
the secretion and action of the pro-inflammatory 
cytokine (IL-6). 

Zhang and colleagues explored the efficacy of apigenin 
as a pre-treatment for LPS-induced inflammation in 
human macrophages. As reported, apigenin markedly 
inhibited TNF-α, IL-1β-induced NF-κB activation, 
and IL-6 production.53 Furthermore, apigenin has 
been demonstrated to suppress adhesion molecules 
[vascular cell adhesion protein 1 (VCAM1) and IL-6-
induced intercellular adhesion molecule (ICAM-1)] and 
chemokines (CCL5).53 Consequently, several natural 
immunomodulating drugs could produce inhibitory 
efficacy against inflammatory cytokines, thus enabling 
the possibility of targeting cytokine storm cascades 
when employed as an immunomodulatory agent during 
cytokine storm treatments.

Alkaloids
Alkaloids are nitrogen-containing compounds, and are 
one of the most common phytochemicals in plants. They 

are found in families such as Apocynaceae, Amaryllidaceae, 
Asteraceae, and Papaveraceae families, and have significant 
biological activities and pharmacological effects due to 
their nitrogen-containing frameworks with a negative 
oxidation potential.54 Moreover, phytochemicals in this 
class exhibit anti-inflammatory and antioxidant properties, 
as well as enzymatic inhibitory activities, which contribute 
significantly to their role in the treatment of neurological 
disorders.55,56

Moreover, alkaloids have demonstrated anticancer, 
antibacterial, and analgesic attributes.57,58 Alkaloids, such 
as colchicine when administered at pharmacological 
doses exhibited immunomodulatory effects including 
diminishing cytokines production, such as IFN-γ, IL-1β, 
IL-6, and IL-18.59 Studies also indicated that colchicine 
suppresses inflammatory cytokines via multiple 
mechanisms, including the interruption of inflammasome 
activation [one of the major pathways to limit pro-
inflammatory cytokine (IL-1, IL-6, TNF-α) release] and 
recruitment of more macrophages and neutrophils.60-62

Compared to polyphenols, alkaloids have a narrow 
therapeutic margin and exhibit activity at extremely low 
doses. However, their potential cytotoxic effects should 
not be overlooked, with the exception of chelerythrine 
and chelidonine.63Additionally, certain alkaloids have 
been known to cause gastrointestinal side effects, such as 
diarrhea, nausea, and cramps.64

Glycosides
Glycosides are composed of two chemically and 
functionally independent parts, wherein the glycone 
(saccharide) portion is linked to another functional group 
via a glycosidic bond.65 Many plants store glycosides as 
inactive compounds that can be activated by enzymatic 

Figure 1. Phytochemicals classification
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reactions.66 The pharmacological effects of glycoside are 
generally attributed to its aglycone moiety, whereas its 
glycone moiety determines its water solubility.

Glycosides could be classified based on their aglycone 
structure, for instance, sterol or flavonoid, whereas 
the number of saccharides in the carbohydrate unit 
determines whether the glycosides are mono-, di-, or 
trisaccharides. Glycosides could also be divided according 
to the glycosidic linkage between their aglycone and 
the carbohydrate groups (sugar moiety). Alternatively, 
therapeutic applications could be employed as another 
classification basis, such as cardiac glycosides, which 
are well-known for their positive effects on cardiac 
arrhythmia.65,67,68

The unique structure of glycosides has resulted 
in their wide therapeutic applications, including 
antioxidant, immunomodulatory effects, anticancer, and 
anticoagulant.69-71 Studies have shown that glycosides, 
such as sativoside, derived from Stevia rebaudiana leaves 
down-regulate pro-inflammatory cytokines production. 
In addition, it reduces NF-κB and pro-inflammatory 
cytokines levels IL-1, IL-6, IL-17a, IL-10, and TNF-α.72-75 
Similarly, naringin, a glycoside derived from the 
flavanone naringenin and found as the primary bioactive 
constituent in citrus fruits. This glycoside demonstrated a 
neuroprotective effect in cerebral infarction by inhibiting 
neuronal cell apoptosis and diminishing inflammatory 
cytokines, such as IL-6 and TNF-α.76

Terpenes (isoprenoids)
Based on their structure and functions, terpenes are 
divided into several classes. The isoprene unit is the 
backbone of terpenes, and most terpenes consist of two 
or more isoprene units organised in a specific sequence.77 
Terpenes are basic hydrocarbon structures, while 
terpenoids are modified terpenes with extra functional 
groups, commonly relocated or eliminated oxygen-
containing groups.78

Terpenes are natural chemical compounds found in 
plants and animals and are well known for their diverse 
medicinal qualities. These compounds play a protective 
role against diseases and parasites in plants, animals, 
and microbes.79 Additionally, terpenes are also essential 
to plants as they are required in carbon fixation via 
metabolic reactions.80

Some studies have suggested the potential of terpenes 
in modulating cytokines due to their lipophilic properties 
that facilitated their rapid actions and uptakes.81 In another 
study, some terpenes, including carvacrol have shown 
enhanced production of anti-inflammatory cytokines, 
such as IL-10.82

Polysaccharides
Polysaccharides are macromolecular molecules with 
broad biological functions. They are composed of more 
than ten monosaccharides connected by glycosidic 

linkages. Various polysaccharide molecules have been 
extracted from organic sources and classified according 
to their sources as animal, microorganism, or plant 
polysaccharides.83 Recent studies have focused on the 
immunobiological effects of polysaccharides extracted 
primarily from Chinese herbal medicine.84,85 Several 
polysaccharide classes have demonstrated antioxidant, 
antitumor, and immunomodulatory properties. In 
fact, the most established mechanism is the capacity of 
polysaccharides to modulate macrophage function. These 
phytochemicals could inhibit cytokines, including IL-6 
and TNF-α, while inducing cytokines, such as IL-2, IL-
10, and IL-4. Prospectively, polysaccharides might be the 
foundation for evaluating new medicinal compounds with 
immunomodulatory attributes.86-88

Organosulfur compounds
Organosulfurs are widely recognized for their exceptional 
therapeutic characteristics and health benefits. Typically, 
these class of phytochemicals are found in several dietary 
sources, including vegetables, fruits, grains, and legumes.89 
Several plant-based diets rich in organosulfur compounds 
have been studied for their anti-inflammatory and 
antioxidant properties.90 For instance, Allium cepa, Allium 
sativum, and Pentadiplandra brazzeana contain high 
concentrations of organosulfur compounds such as alliin, 
allicin, diallyl disulfide, and diallyl trisulfide, which are 
responsible for the plants’ anti-inflammatory, antioxidant, 
anticancer, hepato- and cardioprotective properties.91,92 
Garlic extracts have also been reported to modulate the 
release of inflammatory cytokines, including IL‐1β, IL-6, 
and TNF-α, demonstrating immunomodulatory-inducing 
abilities.93

Studies have revealed that the water fraction of garlic 
increased IFN-γ and IL-12 levels while suppressing the 
expression of inflammatory cytokines IL-1, IL-6, and 
TNF-α in bronchoalveolar lavage fluid.94 In another 
report, allicin inhibited the spontaneous and TNF-α 
-induced production of IL-1β and IL-8 from two different 
cell lines in a dose-dependent manner. The diminished 
cytokine production was attributed to the inhibitory 
effect of allicin on the breakdown of IκB in the NF-κB 
pathway.95 Therefore, the use of organosulfur compounds 
alone or combined with other phytoconstituents might 
be effective against disproportionate immune responses 
seemingly related to cytokine storm due to their various 
pleiotropic effects. 

Table 1 summarizes the immunomodulatory properties 
of various natural products with respect to specific 
regulatory signalling pathways.

Immunomodulating agents and the regulatory 
signalling pathways
Possible pharmacological targets
The TNF-α /NF-κB signalling pathways
TNF-α is a well-recognized pro-inflammatory cytokine 
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Table 1. Immunomodulatory properties of various phytochemicals and the associated regulatory signalling pathways

Phytochemical 
class

Phytochemical name Plant source Experimental model
Targeted inflammatory 
pathway

Main effect Reference

Alkaloid Berberine Coptis chinensis
LPS-induced ARDS 
model in mice

NF-κB pathway
Inhibit the production of IL-1β, 
IL-6 and TNF-α.

96

Alkaloid Berberine Coptis chinensis
Female BALB/c
Mice

MAPK and NF-κB 
signalling pathways

Reduce the expression levels 
of the relative cytokines IL-2 
and IL-4.

97

Alkaloid Protostemonine
Stemona 
sessilifolia

C57BL/6 mice model
MAPK and NF-κB 
signalling pathways

Decrease generation of IL-1β, 
IL-6 and TNF-α in murine ALI 
model. 
Decrease the expression of 
iNOS, and the generation of 
NO.

98

Alkaloid Tetrahydroberberrubine
Corydalis 
yanhusuo

LPS-induced acute 
lung injury in mice

 MAPK, AKT and NF-
kB pathways

Inhibit the activation of NF-kB 
p65 and JNK/p38 MAPKs. 

99

Alkaloid Tabersonine
Catharanthus 
roseus

LPS-induced acute 
lung injury in mice

NF-κB pathway, 
MAPK/MK2 signalling

Inhibit the production of IL-1β, 
IL-6 and TNF-α. 
Inhibit production of iNOS, 
NO.

100

Flavonoid Cyanidin

Black 
elderberries, 
rubus (blackberry, 
raspberry)

Male C57BL/6 J mice SirT1/NF-κB pathway
Supress block of NF-B 
signalling.
Reduce IL-1, IL-18 expression.

101

Flavonoid Apigenin
Cynodon 
dactylon, Mentha 
longifolia.

LPS-stimulated human 
monocytes,
LPS-stimulated mouse 
macrophages.

NF-κB pathways

Suppresses TNF release in 
primary human monocytes.
Reduce the expression of IL-1α, 
IL-8 TNF-α.

102

Flavonoid
Epigallocatechin-3-
gallate

Camellia sinensis 
L.

- HPAEpiCs (type II
alveolar epithelial 
cells)/ A549 cells 
(human alveolar 
epithelial cell 
carcinoma), Male ICR 
mice.

MAPK/STAT3 pathway.

Reduce TNF-α-induced 
oxidative stress.
Suppress MAPKs 
phosphorylation and 
expression signal activators of 
STAT-3.

103

Flavonoid Puerarin Radix puerariae
Male Sprague-Dawley 
rats

NF-κB/ JAK2/STAT3 
Signal

Reduced the levels of IL-1β, 
IL-6 and tumour TNF-α in 
cerebral tissue.

104

Flavonoid Luteolin
Reseda luteola, 
other plants

Male Wistar rats NF-κB pathway

Suppress IL-1β-stimulated 
inflammatory action in rat 
chondrocytes.
Suppress the IL-1β-stimulated 
phosphorylation of NF-κB p65 
in vitro.
Decrease the IL-1β-stimulated 
production of NO, TNF-α, and 
PGE2.
Decrease the expression of 
iNOS and COX-2.

105

Flavonoid Luteolin
Reseda luteola, 
other plants

Murine model of LPS-
induced Acute lung 
injury.

MAPK/NF-kB 
pathways

Decrease superoxide dismutase 
and catalase activity, as well 
as oxidative damage in lung 
tissue.

106

Flavonoid Fisetin

Apples, 
strawberries, 
cucumbers and 
many other plants

Male BALB/c mice
NF-kB and NFAT 
pathways

Inhibit the Th1 and Th2 
production, and reduce the 
ratio of CD8 + / CD4 + T cells.

107

Flavonoid Astilbin
Smilacis Glabrae 
Rhizoma

LPS-induced ARDS 
in mice

MAPK signal pathway

Decrease pro-inflammatory 
cytokines release.
Suppressed the activities 
of myeloperoxidase and 
malondialdehyde.
Supress the expression of 
TNF-α and IL-6 in vivo and 
in vitro.

108

Flavonoid Puerarin Radix puerariae
LPS-induced acute 
lung injury in mice / 
RAW264.7 cell line

NF-κB pathway
Inhibit the production of IL-1β, 
IL-6 and TNF-α.

109
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Phytochemical 
class

Phytochemical name Plant source Experimental model
Targeted inflammatory 
pathway

Main effect Reference

Flavonoid Acacetin

Robinia 
pseudoacacia 
(black locust), 
Turnera diffusa 
(damiana), Betula 
pendula (silver 
birch)

sepsis-induced acute 
lung injury model in 
mice

NF-κB pathway

Regulate COX-2, iNOS.
Decrease pro-inflammatory 
cytokine
concentration.

110

Flavonoid Hesperidin Citrus fruits
Male BALB/c mice,
MCF7 BRCA cell line.

NF-κB pathway 

Reduce IL-1 and TNF- levels in 
the spleen cells.
Exhibit good antioxidant& anti-
inflammatory properties.

111,112

Flavonoid Hesperetin Citrus fruits male C57BL/6J mice NF-κB pathway

Suppress colitis-stimulated 
tissue oxidative stress.
Suppress TNF-α, IL-6, IL-1β, 
and IL-33.

113

Flavonoid Hesperetin Citrus fruits
LPS-induced acute 
lung injury in mice

MAPK signal pathway

Reduce the number of 
neutrophils.
Reduce the level TNF-α and 
IL-6, in the model in vivo and 
in vitro.
Regulate IκB degradation.

114

Flavonoid Silymarin
Silybum
marianum (Milk 
thistle)

human hepatoma cell 
lines

NF-κB pathway
Inhibit the expression of TNF-α.
Exhibits antiviral and anti-
inflammatory effects.

115

Triterpene Bigelovii A
Salicornia 
bigelovii T

LPS-induced acute 
lung injury in mice

NF-κB pathway
MAPK pathway

Decrease inflammatory 
mediators.
Neutrophil infiltration.

116

Triterpene Cucurbitacine
Hemsleya 
amabilis

Female BALB/c mice
JAK/
STAT3 pathway
NF-κB pathway

Suppress the expression of 
TNF-α, IFN-γ and IL-6.

117

Sesquiterpene Isoalantolactone Inula helenium L male C57/BL6 mice NF-κB pathway
Decrease IL-6, IL-1β, TNF-α, 
and NO Expression.
Suppress neutrophil infiltration.

118

Polysaccharides
Kochia scoparia 
polysaccharide fraction

Kochia scoparia
LPS-induced ALI in 
mice

Not mentioned 

Decrease neutrophil 
infiltration.
Decrease IL-6 and TNF-α 
levels.
Reduce neutrophil infiltration.

119

Polysaccharides
Dendrobium 
officinale -extracted 
polysaccharides

Dendrobium 
officinale

Dextran sodium 
sulfate -induced acute 
UC in mice

NLRP3 pathway
β-arrestin-1 signal 
pathway.

Inhibit NLRP3 inflammasome 
and β-arrestin-1 activation.
Reduce the mRNA levels of 
NLRP3, IL-1β and IL-18.

120

Phenolic acid Gallic acid

Bearberry, 
pomegranate root 
bark, and many 
other plants

C57BL/6J mice NLRP3 pathway
Decrease IL-1β expression.
Inhibit NLRP3 inflammasome 
activation.

121

Phenolic acid Gallic acid

Bearberry, 
pomegranate root 
bark, and many 
other plants

Male BALB/c mice NF-κB pathway 

Downregulation of TNF-α /IL-
1β/ /MIP-2/GCSF genes.
Reduce production of IL-1β, IL-
6, and TNF-α.

122

Phenolic acid Chlorogenic acid
Chaenomeles 
lagenaria

LPS-induced 
murine RAW 264.7 
macrophages / BALB/c 
mice

NF-κB/NLRP3 
pathway

Reduce production of IL-1b& 
IL-18.

123

Phenolic 
compound

Imperatorin Urena lobata Male C57BL/6 mice JAK/STAT and NF-κB

Decrease the expression of 
iNOS and COX-2.
Inhibit IL-6 and TNFα 
production.

124

Phenolic 
compound

Isofraxidin

Sarcandra 
glabra and 
Acanthopanax 
senticosus

Mice in vitro / in vivo MAPK pathway.

Reduce the production of 
TNF-α.
Regulate proinflammatory 
cytokines.

125

Phenolic 
compound

Curcumin Curcuma longa WKY and SHR rats
NF-κB-mediated 
NLRP3 regulation.

Reduce IL-1β production.
Good target for NLRP3 
inflammasome-driven 
disorders.

126

Table 1. Continued.



Phytochemicals and cytokine storm: a review

Advanced Pharmaceutical Bulletin, 2024, Volume 14, Issue 1 111

Phytochemical 
class

Phytochemical name Plant source Experimental model
Targeted inflammatory 
pathway

Main effect Reference

Phenolic 
compound

Apocynin
Picrorhiza kurroa, 
and many other 
plants.

Adult male
SPF Wistar rats

NLRP3 inflammasome
Activation.
NF-κB signalling
NADPH oxidase 
(NOX) signalling.

Decrease levels ofNLRP3 
inflammasome proteins.
Reduce the serum level of 
TNF-α, IL-1β and IL-6.

127

Phenolic 
compound

Paeonol Moutan Cortex

Trinitrobenzene 
sulfonic acid TNBS-
induced colitis in 
Female BALB/c mice,
colorectal cancer-
derived cell line 
(CW-2)

NF-κB and STAT1

Reduce the production of 
iNOS protein and mRNA 
generated by TNF-α and IFNγ 
signalling.
Suppress TNFα-enhanced NF-
κB regulation activity and IFNγ 
stimulation of STAT1.

128

Phenolic 
compound

Gingerol
Zingiber officinale 
(Ginger)

Female Balb/c 
miceallergy model, 
HaCaT cell line

NF-κB/MAPK 
pathways

Suppress inhibited the 
phosphorylation of MAP 
kinases.
Inhibit the synthesis of 
cytokines necessary for T cell 
activation and proliferation.

129

Organosulfur
compounds

Allicin Garlic and others

Kupffer cells and male 
Sprague Dawley
rats (treated with 
acrylamide).

MAPK /NF-κB / NLRP3
inflammasomes 
pathways

Reduce reactive oxygen species 
release.
Reduced the phosphorylation of 
JNK, ERK, p65, p38, and IκBα.
Suppressing the stimulation of 
the NLRP3 inflammasome.
Reducing the release of IL-1β, 
IL-6, IL-18, and TNF-α.

130

Organosulfur
compounds

Benzyl isothiocyanate
Alliaria petiolata, 
and papaya seeds

Male C57BL/6 J mice
NF-κB/NLRP3 
pathway

Decrease in IL-1β expression.
Reduce macrophage 
infiltration.

131

Organosulfur 
compound

Alliin
Allium species 
(garlic, onion)

- LPS-induced 
RAW264.7 cell 
line, dextran sulfate 
sodium-induced 
colitis in ICR mice.

MAPKs-PPARγ /
AP-1/ NF-κB /STAT-1 
signalling pathways.

Suppress the phosphorylation 
of p38, JNK.
Suppress the transcription of 
iNOS via interference with 
STAT-1.
Reduce the activity of pro-
inflammatory cytokines.

132

Glycoside Bergenin
Bergenia ligulata 
and Bergenia 
ciliata

LPS-induced ALI in 
male BALB/c mice, 
Raw264.7 cell line.

NF-κB pathway

Inhibit production of IL-1β, IL-6, 
and TNF-α.
Supress the activation of NF-κB 
by suppress the phosphorylation 
of NF-κB p65 unit.

133

Glycoside Stevioside Stevia rebaudiana Male Wistar rats
-TLR4-MD2 and
TNFR1, NF-kB

Reduce the expression of 
NF-κB and proinflammatory 
mediators.
Free radical scavenger, exert 
good antioxidant properties.

74

Glycoside Stevioside Stevia rebaudiana
Caco-2 (human colon 
carcinoma) cell line

NF-κB signalling

Exhibit potent 
immunomodulatory effects 
on IκBα activation and NF-κB 
inhibition and reduce cytokine 
production.
Suppressed LPS-stimulated IL-
1β, IL-6, and TNF-α release.

134

Glycoside Catalpol
Rehmannia 
glutinosa

male C57BL/6J mice
JNK and NF-kB 
signalling pathways

Inhibit JNK and IKKb 
phosphorylation.
Suppress the activation of p50/ 
NF-kB.
Decrease mRNA levels of pro-
inflammatory cytokines.

135

Table 1. Continued.

predominantly released by macrophages, monocytes, 
and T cells. It is implicated in numerous infectious 
and autoimmune disorders.136,137 The TNF-dependent 
activation of NF-κB also increases anti-apoptotic and pro-
inflammatory gene transcriptions.138 Furthermore, TNF-α 
imbalance is the hallmark of numerous autoimmune 

disorders.139 Higher TNF-α concentration has been 
associated with poor outcomes in SARS-CoV and MERS 
patients.140 Nevertheless, TNF-α has also been reported 
to inhibit NF-B and ameliorate pulmonary symptoms in 
mice infected with the SARS-CoV virus.141

The TNF/NF-κB interactions could play pathogenic 
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roles in developing cytokine storm cascades and 
immune system hyperactivation during cytokine storms. 
Consequently, suppressing NF-κB signalling pathway 
could assist in reducing inflammatory diseases.142 
Selective TNF-α inhibition is also therapeutically helpful 
in treating different pathological conditions, considering 
the involvement of numerous other cytokines and 
intermediates in cytokine storms. Accordingly, TNF-α 
blockers, such as infliximab and adalimumab, have been 
used effectively in treating various immune-mediated 
illnesses. The administration of anti-TNF-α therapy 
on COVID-19 patients also limits the release of other 
inflammatory-enhancing mediators. Furthermore, 
treating patients with active rheumatoid arthritis using 
anti-TNF-α has resulted in a rapid vascular permeability 
decrement and reduced broad-spectrum cytokines release, 
such as IL-6 and IL-1.143-146

Several phytochemicals possess modulatory activation 
and inflammation ameliorative abilities. For example, 
quercetin, a polyphenolic component suppresses pro-
inflammatory gene expressions by blocking the nuclear 
translocation of p50 and p65 subunits of the NF-κB 
receptors.147 Min et al148 also demonstrated that quercetin 
diminished the gene expression and production of IL-1β, 
IL-6, IL-8, and TNF-α in human mast cells by inhibiting 
IκBα degradation and p65 nuclear translocation. In 
another report, Chen et al149 reported the inhibition of 
IKK and NF-κB activations, as well as a decrease in NF-
κB’s ability to bind DNA in BV-2 microglia mice treated 
with LPS and IFN-γ. 

Other phytochemicals, such as silymarin (flavonoid),150 
ursolic acid(triterpenoid), 151 gingerol (phenolic 
compounds),152 flavopiridol (flavonoid),153 zerumbone 
(sesquiterpene),154 curcumin (polyphenol pigment), 

155 and green tea catechins- epigallocatechin-3-gallate 
(phenolic compounds) 156 are natural immunomodulatory 
agents with the ability to block one or more stages in NF-
κB signalling. Consequently, pharmacologically profiling 
of phytochemicals would enable the identification of 
potent inhibitors for the NF-κB signalling pathway, thus 
providing a solid rationale for their application in cytokine 
storm management. 

The IL-1/NF-κB signalling pathways
IL-1β is one of the most investigated IL-1 family members 
due to its prominent role in autoinflammatory disorders. 
It is primarily released by macrophages, monocytes, and 
dendritic cells.157 IL-1β derived is from inactive IL-1β 
precursors via NLRP3 inflammasome cleavage.158 Several 
studies suggested that IL-1β might contribute to the 
severity of COVID-19 symptoms and autoinflammatory 
diseases.159-161

In severe COVID-19 cases, reactive oxygen species 
(ROS) arising from inflammation, and infiltration 
activates of NLRP3, which is one of the most significant 
innate immune components. Hence, this process 

accelerates inflammation by releasing IL-1 and enhancing 
IL-1 precursor cleavage, which subsequently exacerbates 
cytokine inflammation throughout the COVID-19 
infection.162,163 Therefore, a selective antagonist targeting 
NLRP3 might be a therapeutic target for early-stage 
disease cases aiming to minimise cytokine storms, 
alleviate complications, and reduce mortality rates.164,165 
Moreover, targeting the IL-1RI receptor has been recorded 
as effective approach during cytokine storm treatments 
in certain autoimmune disorders, such as CAR-T-cell 
therapy-induced cytokine storm,157 and secondary HLH.166

Numerous phytochemicals have been documented to 
suppress NLRP3 activation by acting on various stages 
of inflammasome cascades and positively affecting 
experimental models. For example, Fan et al167 reported 
that tenuigenin, a triterpene isolated from the root 
of P. tenuifolia, inhibited the activation of NLRP3 
inflammasome by repressing ROS before impeding 
caspase-1 cleavage and IL-1β productions in BV2 
microglial cell. Several phytochemicals from different 
categories have also been found to target NLRP3. Such 
immunomodulatory agents include triterpenoid Asiatic 
acid,168 sesquiterpene lactone Arglabin,169 cucurbitacin, 170 
and iridoid glycoside scropolioside B.171

The IL-6/JAK-STAT signalling
IL‐6 is a prototypical cytokine involved in numerous 
biological processes, including acute-phase reactions, 
immune responses, and hematopoiesis.172 It is 
characterized by a unique receptor system that consists of 
two functional proteins: the standard signal transducer for 
cytokines related to IL-6 (gp130) and the specific receptor 
for IL-6R.173 IL-6 is a good target molecule for cytokine 
storm given that it is expressed for longer periods than 
TNF-α and IL-1. It is also considered a superior indicator 
of disease severity and a prognostic marker for various 
diseases associated with cytokine storms, including CAR-
T-induced and COVID-19.157,174,175

Blockade of IL-6 signalling has produced rapid and 
significant improvements in clinical symptoms and 
reduction in serum cytokine levels (including IL-6, IL-
8, IL-10, and IFN-γ) during cytokine storms. Therefore, 
targeting IL-6 antagonism holds promise as a therapeutic 
approach for various cytokine storms, regardless of the 
specific situations and cytokine profiles involved.175,176

Gallic acid, a phenolic acid naturally found in vegetables 
and fruits, has the ability to modulate the activation of the 
STAT pathway. Pandurangan et al177 reported that gallic 
acid attenuated STAT3 phosphorylation and decreased 
p65-NF-κB expressions in the colon of mice induced with 
dextran sodium sulfate. Similarly, Wung et al178 revealed 
the inhibition of IL-6-induced intercellular adhesion 
molecule (ICAM-1) gene expressions by resveratrol, 
partly via Rac-mediated pathway interferences through 
suppression of STAT3 phosphorylation. The safety and 
efficacy of phytochemicals make them a promising agent 
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to consider for IL-6 JAK/STAT inhibition in cytokine 
storm therapy.

The IFN-γ/JAK/STAT signalling
IFN-γ signalling plays a crucial role in inflammatory 
and other immunological responses, contributing to the 
prevention of viral and bacterial infections.179 IFN-γ is 
predominantly released by NK and activated T cells and 
is a potent macrophage activator.180 Moreover, STAT1 
phosphorylation is regulated by JAK1/TYK2 or JAK1/
JAK1, which is vital for signalling via the IFN-γ and 
related receptor class.181 Studies have revealed that IFN-γ 
plays a significant role in several cytokine storm-related 
diseases.182 These findings are supported by evidence 
indicating that elevated IFN-γ levels are ineffective against 
infections and lead to immunopathology due to impaired 
NK function, as evidenced by primary HLH cases.183

Although specific investigations have raised doubts 
about the role of IFN-γ blockers due to worsened 
prognosis of severe COVID-19 patients by generating 
secondary infections in COVID-19 cases, INF-γ blockades 
could be the core of the treatment.184 Numerous studies 
have reported that several phytochemicals possess potent 
abilities to reduce or block IFN-γ activation pathways. In 
a study conducted by Yang and colleagues, it was found 
that berberine, a natural isoquinoline alkaloid, inhibited 
the IFN-γ signalling pathway in DSS-induced ulcerative 
colitis. Regarding mechanisms, berberine regulates the 
IFN-γ signalling pathway via interaction with the genes 
responsible for encoding IFN-γ. Furthermore, IRF8 
decreased significantly in ulcerative colitis mice treated 
with berberine.185 Ishiguro et al128 found that paeonol 
(polyphenolic product) reduced IFNγ-induced STAT1 
activations, TNF-α-induced NF-κB transcriptional 
activities, and IFN-γ and TNFα-induced iNOS mRNA 
expressions.

Conclusion
Cytokine storm is a life-threatening condition that has 
been the subject of several studies, aimed at developing 
immunomodulatory drugs that target specific cytokines. 
Plant-derived immunosuppressants are a potential 
alternative for treating cytokine storm syndrome. 
A combination therapy comprising plant-derived 
immunosuppressants and some medications may be 
successful. Therefore, further studies are needed to 
understand the processes of phytochemically derived 
immunomodulating agents in different physiological 
situations and to gain greater insights into their therapeutic 
applications.
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