
Adv Pharm Bull, 2024, 14(3), 543-557
doi: 10.34172/apb.2024.059

https://apb.tbzmed.ac.ir

Novel Advances in Cell-Free Therapy for Premature Ovarian 
Failure (POF): A Comprehensive Review
Yahya Yahyavi1 ID , Niloufar Kheradi2 ID , Abbas Karimi1 ID , Abbas Ebrahimi-Kalan3 ID , Fatemeh Ramezani1 ID , Soudabe Yousefi4 ID , 
Shirin Teymouri Nobari5 ID , Hourieh Sadrekarimi6 ID , Mohammad Nouri4* ID , Mahdi Edalati7* ID

1Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
2Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
3Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 
Tabriz, Iran.
4Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
5Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
6Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
7Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran.

Introduction
Premature ovarian failure (POF), is a condition 
characterized by the early decline of ovarian function. 
Women with POF may experience symptoms similar to 
menopause. While the average age of menopause in the US 
is 51 years, POF affects women under the age of 40, leading 
to a cessation of ovulation and a decline in hormonal 
ovarian functions.1,2 Based on worldwide epidemiological 
statistics, POF impacts about 1% of females under 40 years 
old, 0.1% of females under 30, and 0.01% of females under 
20.3 Typical symptoms consist of absence of menstruation, 
inability to conceive, night sweats, hot flashes, and 
urogenital issues. POF is a multifaceted condition that 
can result from a variety of factors, including genetic 
influences (like Turner’s syndrome, fragile X messenger 
ribonucleoprotein1, premutation, galactosemia), 
autoimmune disorders, mitochondrial irregularities, 
medical treatments (such as chemotherapy, radiotherapy, 
and surgeries), infectious illnesses (like tuberculosis, 
mumps, malaria, varicella, shigella, cytomegalovirus, and 
herpes simplex), and environmental elements.4 Moreover, 

a notable number of individuals with POF experience an 
idiopathic version of the disorder with an unknown cause.5 
Currently, hormone replacement therapy (HRT) is the 
first-line treatment for POF. Long-term HRT treatment 
can help control symptoms by replacing estrogens in 
the body and preventing the adverse consequences of 
POF.6 Nonetheless, HRT is unable to fully revive ovarian 
function, and prolonged utilization may lead to negative 
outcomes such as cardiovascular issues, osteoporosis, 
and breast cancer.7 In vitro activation (IVA) presents a 
different method for addressing POF. This therapy has 
the potential to boost the quantity of developed eggs in 
POF individuals, enabling them to achieve successful 
pregnancies. Nevertheless, the effectiveness of IVA may 
be limited when the quality of oocytes related to age has 
deteriorated.8 Researchers are developing new strategies, 
including mitochondrial activation, stem cell therapy, 
intra-ovarian infusion of platelet-rich plasma (PRP) 
and exosomes transportation, to address POF. These 
emerging treatments aim to provide additional options 
for POF patients.5 In recent decades, PRP therapies have 
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Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation 
function. POF is a complex disorder that can be caused by various factors, and the idiopathic 
form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is 
currently considered the first-line treatment for POF. This review aims to provide a comprehensive 
overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell 
therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising 
cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, 
has been used to treat POF for more than a decade and has been shown to attenuate oocyte 
morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt 
and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review 
summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and 
limitations of their potential clinical applications.
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gained significant attention in the field of regenerative 
medicine. Numerous systematic reviews and meta-
analyses have documented the promising outcomes of 
PRP therapies in various clinical areas, such as orthopedic 
surgery, plastic surgery, dermatology, gynecology, cardiac 
surgery, maxillofacial surgery, pain management, spinal 
disorders, sports medicine, and more.9 The main reason 
PRP is beneficial for healing comes from the biomolecules 
released by platelets, particularly growth factors. Platelets 
possess the capability to release growth factors, cytokines, 
and substances that regulate the extracellular matrix, 
aiding in the process of vascular regeneration, tissue 
healing, and stimulation of stem cells.10 Although the 
scientific rationales behind PRP’s effects are not entirely 
comprehended, recent advancements in platelet research 
have shed light on the subject. Specifically, the focus has 
been on Extracellular vesicles (EVs) released by platelets, 
such as exosomes, which have gained significant attention 
due to their functionality. In the past few years, research 
on these vesicles has increased exponentially.11 Platelet-
derived exosomes (PLT-Exos) are a specific type of EVs 
comprising small lipid bilayer vesicles released by platelets. 
These PLT-Exos make up more than 75% of EVs present 
in the blood. Ranging in size from 30 to 100 nm, they are 
formed from the nucleosome and are released through the 
merging of multivesicular bodies (MVBs) with the cell 
membrane.12 Following their release, exosomes have the 
capability to convey a range of materials to recipient cells, 
such as mRNAs, microRNAs (miRNAs), proteins, lipids, 
and molecules like ceramide and phosphatidylserine.13 
Platelets, which are derived from megakaryocytes in 
the bone marrow, play a critical role in blood function 
and are engaged in a number of physiological and 
pathological processes such as hemostasis, thrombosis, 
immune response and wound healing. When platelets 
are activated, they release PLT-Exos that facilitate 
communication between cells by delivering microRNAs 
and proteins.14 The use of PLT-Exos derived from one’s 
own PRP has demonstrated beneficial impacts on ovarian 
function. It assists in restoring the estrous cycle, elevating 
hormone and anti-Müllerian hormone (AMH) levels, as 
well as boosting follicle count. Additionally, it prevents 
follicular degeneration, improves fertility rates, and 
reduces the time required for conception.15 The most 
important mechanism behind rejuvenation of ovarian 
induced by PLT-Exos involves the regulation of granulosa 
cells. This leads to increased proliferation and decreased 
apoptosis, with the involvement of specific signaling 
pathways like PI3K/Akt and BAX.16 PLT-Exos also carry 
various microRNAs, including miR-144-5p, miR-126-3p, 
and miR-369-3p, which inhibit granulosa cell apoptosis 
through different pathways. Additionally, PLT-Exos help 
attenuate fibrosis of ovarian tissue and promote theca cells 
differentiation by inhibiting the TGF-β1/Smad3 signaling 
pathway.17 These effects contribute to the reconditioning 
of ovarian function in cases of POF. The purpose of this 

review is to provide a comprehensive overview of the 
recent advancements in treatment of POF patient and uses 
of PLT-Exos as a promising cell-free therapeutic approach 
in reproductive medicine. The review aims to elucidate 
the underlying molecular mechanisms of PLT-Exos, as 
well as discuss the advantages and limitations of their 
potential clinical applications. Based on current research, 
it is anticipated that PRP-derived products, such as PLT-
Exos or PRP hydrogel, will emerge as more effective and 
safer alternatives to traditional PRP in the field of tissue 
repair and regeneration.

Pathophysiology of POF 
One percent of women are affected by POF, and most 
instances are idiopathic. The causes of POF are varied 
and may include chromosomal and genetic abnormalities, 
autoimmune ovarian destruction, environmental factors 
and iatrogenic factors. The clinical presentation of POF is 
variable and may include symptoms of estrogen deficiency, 
infertility, menstrual disturbance, or syndromic conditions. 
The presence of increased blood follicle-stimulating 
hormone (FSH) concentrations ( > 40 IU/L) on at least 
two occasions spaced a few weeks apart is the basis for 
the diagnosis. This is necessary to ensure certainty as the 
diagnosis can be devastating and the natural history of 
POF can be unpredictable, with many women experiencing 
relapse and remission. Some women may also experience 
“fluctuating ovarian function”.18 In clinical settings, women 
diagnosed with POF exhibit a pregnancy probability of 
approximately 1%-5%. Given this inherent rate of fertility, 
any unverified claims of successful POF management 
should be considered cautiously. Nonetheless, it is crucial 
to inform women with POF about their condition to ensure 
they can make informed decisions regarding the use of 
contraception when necessary. The objective of secondary 
research in this context is to ascertain the underlying causes 
of POF and to track any associated complications.19 Ovarian 
biopsies are of limited value in research due to the diminutive 
and unrepresentative nature of the samples collected. In 
a similar vein, pelvic ultrasound does not offer predictive 
insights but is instrumental in identifying individuals 
who may be eligible for future oocyte preservation or 
maturation interventions. Ultrasonography, owing to its 
non-invasive character, fulfills a psychological role by 
aiding individuals in understanding and coming to terms 
with their condition, often marked by small ovaries and 
reduced follicular activity. The screening for autoimmune 
thyroid and adrenal antibodies stands as a vital subsequent 
test for tracking potential insufficiencies in thyroid and 
adrenal function, or vitamin B12 levels, especially when 
initial tests are inconclusive. Gathering a thorough family 
history can uncover the involvement of up to 30% of other 
female relatives, thereby facilitating the provision of genetic 
counseling.20 Genetic assessments are increasingly utilized 
in familial cases of POF and are also applicable to sporadic 
cases, offering a more cost-effective and efficient approach. 
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For example, screening for pre-mutations in the FRAXA 
gene is common, with a detection rate of 15% in individuals 
with a confirmed family history and 3% in sporadic cases. 
Currently, karyotype analysis and FRAXA premutation 
screening are the only broadly available tests. These should 
be considered for individuals with a family history or those 
experiencing an unusually early onset of POF.21

Aetiology of POF
POF can be attributed to various causes including 
chromosomal abnormalities, genetic factors, autoimmune 
disorders, metabolic conditions (such as galactosemia), 
infectious diseases (like mumps), and iatrogenic factors 
(such as anticancer treatments). However, despite 
advancements in diagnostics, a significant number of POF 
cases still have no identifiable cause and are considered 
idiopathic (Table 1).22

Genetic reasons of POF 
Turner’s syndrome and X chromosome defects
Failures involving the X chromosome, such as Turner’s 
syndrome and X chromosome abnormalities, have been 
associated with POF. These anomalies may involve the 
entire loss of an X chromosome (Turner syndrome), or 
minor problems such as autosome X translocations or 
deletions. The precise genetic locus causing POF is still 
unclear, though. In cases of Turner syndrome variants, 
individuals with a mosaic 45, X/46, XX karyotype may 
not exhibit the representative phenotypic property of the 
syndrome but can still present with POF. X chromosome 
deletions have been observed in two specific regions: POF1 
at Xq21.3-q27 and POF2 Xq13.3–Xq21.1.23,24 Interruption 
of several genes involved in ovary development and 
oogenesis within these critical regions may occur due to 
balanced translocations, leading to POF. It is significant 
to remember that not every X chromosomal breakpoint is 
connected to POF.25 

Down’s syndrome
Genetic assessments are increasingly utilized in familial 
cases of POF and are also applicable to sporadic cases, 
offering a more cost-effective and efficient approach. For 

example, screening for pre-mutations in the FRAXA gene 
is common, with a detection rate of 15% in individuals 
with a confirmed family history and 3% in sporadic cases. 
Currently, karyotype analysis and FRAXA premutation 
screening are the only broadly available tests. These 
should be considered for individuals with a family history 
or those experiencing an unusually early onset of POF.26

Premutation of the fragile X messenger ribonucleoprotein 
1 (FMR1) gene
The expansion of CGG trinucleotide repeats (ranging 
from 55 to 200 CGGs) within the 5’ untranslated 
region is indicative of a premutation in the FMR1 
gene. This genetic alteration results in elevated levels of 
FMR1 mRNA.27 The premutation of the FMR1 gene is 
associated with a spectrum of disorders known as fragile 
X-premutation-associated conditions (FXPAC). The 
underlying molecular mechanisms of FXPAC include 
the formation of co-transcriptional R-loops, the toxicity 
of FMR1 mRNA stemming from its aggregation into 
nuclear foci, the sequestration of various CGG-repeat-
binding proteins, and the initiation of repeat-associated 
non-AUG (RAN) translation, which may produce 
deleterious proteins. These molecular disturbances 
can lead to significant cellular consequences, such as 
compromised mitochondrial function and neuronal loss.28 
Individuals with the FMR1 gene premutation may exhibit 
a range of symptoms and characteristics, all of which 
are categorized within the spectrum of FXPAC. FXPAC 
includes disorders such as fragile X-associated tremor/
ataxia syndrome (FXTAS), fragile X-associated primary 
ovarian insufficiency (FXPOI), and fragile X-associated 
neuropsychiatric disorders (FXAND). A thorough 
understanding of both the molecular and clinical aspects 
of the FMR1 gene premutation is crucial for accurate 
diagnosis, informed genetic counseling, and the provision 
of tailored care to affected individuals and their families.29

Autosomal disorder (enzyme deficiencies)
Galactosemia, a rare autosomal recessive disorder, 
is caused by a deficiency in the enzyme galactose-1-
phosphate uridyltransferase (GALT), which is located 

Table 1. Etiology of POF

POF causes Example References

Genetic
Turner’s syndrome and X chromosome defects, Down’s syndrome, premutation of the fragile X 
messenger ribonucleoprotein 1 (FMR1) gene

23-29

Autosomal disorders (enzyme deficiencies) Galactosemia, 17α-hydroxylase, aromatase 30-32

Autoimmune
Adrenal disease, thyroid complications, diabetes mellitus, vitiligo, myasthenia gravis, Addison’s 
disease, systematic lupus erythematosus, celiac disease, autoimmune polyendocrine syndrome

33-37

Mitochondrial abnormality
Absence of protein Mitofusin 2 (MFN2), mutations of dynamin-related protein 1 (Drp1), absence 
of mitochondrial proteases

38-46

Infections
Viral (mumps, cytomegalovirus, herpes and varicella), bacterial (tuberculosis and shigella),
parasite (malaria)

47-49

Iatrogenic factors Chemotherapy, radiotherapy, pelvic surgery 50-55

Environmental toxin Cigarette smoking, heavy metal, solvent, pesticides, plastics, industrial chemicals 56-58
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on the 9p13 chromosome. Female individuals with 
galactosemia often exhibit a significant occurrence 
of POF, with rates ranging between 60% to 70%. This 
disorder is marked by the harmful impact of galactose 
or its byproducts on follicular structures.30 During fetal 
development, the presence of galactose is known to 
reduce the initial population of oogonia, the precursor 
cells to eggs. This reduction hastens follicular atresia, the 
process by which ovarian follicles degenerate and are lost. 
The detrimental effects of galactose are implicated in the 
premature depletion of ovarian follicles, potentially leading 
to infertility or early onset menopause in those affected.31 
Malfunctions in proteins and enzymes crucial for the 
steroidogenesis process, like shortages in aromatase and 
17α-hydroxylase, can contribute to POF. Cells responsible 
for steroid production (such as hilar cells, granulosa cells, 
theca interna, and corpus luteum) and autoantibodies 
targeting these cells are commonly observed in POF cases 
associated with Addison’s disease.32

Autoimmune causes of POF
Autoimmune mechanisms may play a role in up to 30% 
of POF cases. The evidence supporting an autoimmune 
cause includes: 1. Presence of lymphocytic oophoritis: 
Oophoritis is characterized by the infiltration of 
immune cells such as macrophages, natural killer cells, 
T lymphocytes, plasma cells, and B lymphocytes into 
the ovaries. 2. Demonstration of ovarian autoantibodies: 
Anti-ovarian antibodies have been detected in individuals 
with POF, indicating an immune response against ovarian 
tissue. 3. Associated with autoimmune disorders: diabetes 
mellitus, thyroid issues, and adrenal illness.33 Autoimmune 
polyendocrine syndromes (APS) types I and II are 
recognized as additional etiologies of ovarian failure. Type 
I APS is typified by a constellation of conditions including 
POF, chronic mucocutaneous candidiasis, hypothyroidism, 
and adrenal insufficiency. Conversely, Type II APS is 
characterized by the co-occurrence of type 1 diabetes, POF, 
adrenal insufficiency, and thyroid autoimmune disorders. 
Additionally, a spectrum of autoimmune disorders such 
as myasthenia gravis, Adison’s disease, systemic lupus 
erythematosus, vitiligo, celiac disease, among others, have 
been linked to the onset of POF.34 In clinical practice, the 
primary method for identifying an autoimmune etiology 
in the evaluation of POF is to screen for the presence of 
coexisting autoimmune diseases.35 Most women with 
POF, according to research, tested positive for at least one 
organ-specific autoantibody. Anti-thyroid antibodies are 
the most often discovered autoantibodies, accounting 
for 20% of cases. Subclinical involvement of non-ovarian 
autoimmune disease may exist in some cases.36,37

Mitochondrial abnormalities
Mitochondria are responsible for generating energy in cells 
and are unique in that they have their own genetic material 
called mitochondrial DNA (mtDNA). Their main function 

is to create ATP through oxidative phosphorylation. 
Additionally, mitochondria play a crucial role in regulating 
various cellular processes including apoptosis, redox 
potential, and calcium signaling.38 They are the main 
source of reactive oxygen species (ROS) in cells. The most 
significant relationship between mitochondria and oocyte 
quality and embryonic development is this one. Several 
factors, such as malfunctioning mtDNA, heightened 
oxidative harm, changes in membrane potential, and 
reduced production or removal of mitochondria, play 
a role in the aging of ovaries due to mitochondrial 
issues.39 Reduced mtDNA content, strand breakage, 
point mutations, and oxidative damage are all considered 
forms of mtDNA malfunction. According to studies, 
the mtDNA content of people with POF is substantially 
lower than that of healthy fertile women. Furthermore, 
because protective histones and DNA repair enzymes are 
absent from mtDNA, it is prone to mutations.40 Telomere 
shortening can result from significant effects on reactive 
ROS production and mitochondrial proteostasis, even 
from a single-point mutation in the mtDNA. ROS levels 
are frequently noticeably higher in POF populations.41 An 
overabundance of ROS leads to mtDNA mutations and 
energy deficit, which accelerate aging. Further enhancing 
the generation of ROS, mtDNA mutations set off a 
damaging cycle that can lead to cell death.42 Furthermore, 
cellular antioxidant defenses may be overwhelmed by an 
excess of ROS, which can result in oxidative stress (OS) and 
early aging.43 Oocyte aging is also impacted by disruptions 
in mitochondrial dynamics, such as aberrant fusion, 
changes in mitochondrial metabolism, and anomalies in 
calcium homeostasis.44 The protein Mitofusin 2 (MFN2) 
plays a key role in mitochondrial fusion, and the absence 
of MFN2 in oocytes contributes to female infertility.45 
Another important factor for maintaining oocyte quality 
is dynamin-related protein 1 (Drp1), which is involved 
in mitochondrial fission. Drp1 deletion has been linked 
to ovulation problems and follicular dysplasia, according 
to studies. Moreover, the lack of mitochondrial proteases 
might accelerate the aging process of oocytes and cause 
illnesses linked to the mitochondria.46

Infectious causes of POF
Viral oophoritis, particularly mumps oophoritis, is 
recognized as a potential cause of idiopathic POF. Other 
infections, including tuberculosis, malaria, varicella, 
shigella, cytomegalovirus, and herpes simplex, have 
been implicated in the development of POF. It has been 
observed that ovarian failure occurs in 2%-8% of women 
affected by mumps oophoritis, although this condition is 
typically transient.47-49 

Iatrogenic factors
Radiation and chemotherapy can cause POF in people 
receiving treatment for malignant illnesses. Radiation 
therapy field, age, and dose all affect the effects of radiation 
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therapy. For women under 40, a dose of 20 Gy may result 
in complete ovarian failure; for older women, a dose of 
only 6 Gy may do so. Radiation and chemotherapy have 
very little gonadotoxic effect on the prepubertal ovary. 
The likelihood of experiencing premature menopause is 
low in women who undergo radiation treatment that does 
not target the pelvic area. Sixty to one hundred percent 
of patients can maintain ovarian function after ovary 
relocation (Ovariopexy).50-52 A substantial risk factor for 
POF is cytotoxic chemotherapy administered to young 
women for a variety of malignant disorders, especially 
when combined with alkylating drugs, which raise the 
risk by a factor of nine. The risk of POF is four times 
higher in teenagers undergoing chemotherapy, and it rises 
by a factor of 27 in women between the ages of 21 and 
25. Although practically all pelvic surgeries carry some 
risk of ovarian injury due to disruption of the ovary’s 
blood supply or inflammation, this risk is negligible for 
most routine procedures. POF may also result from other 
pelvic interventional procedures such uterine artery 
embolization, which damage the ovary’s blood supply.53-55

Environmental toxins
Research has extensively examined the impact of cigarette 
smoking as a toxin that can influence ovarian function. 
Studies show that, on average, women who smoke 
tend to reach menopause at an earlier age compared to 
nonsmokers, indicating a potential harmful influence 
of cigarette smoking on ovarian function.56 Chang and 
colleagues found a higher likelihood of idiopathic POF 
linked to cigarette smoking.57 There have been reports 
of women with epilepsy having a higher chance of 
experiencing POF. Nevertheless, the existing information 
on the impact of endocrine disruptors, heavy metals, 
solvents, pesticides, plastics, industrial chemicals, and 
cigarette smoke on female reproductive health is not 
definitive. Seeking advice from a healthcare professional 
is crucial for accurate diagnosis and treatment.58

Treatment strategies
HRT does not restore ovarian function, but it is thought 
to be a physiological substitute for progesterone and 
estrogen. IVA, mitochondrial activation, stem cell and 

exosome therapy, and intraovarian infusion of PRP are 
some of the novel approaches that are presently being 
investigated. These treatments must first demonstrate 
their safety and effectiveness in order to be approved 
for use in clinical settings; they are currently in the 
experimental stages. Among these approaches, stem cell 
transplantation, PRP therapy, and the transportation of 
their exosomes have shown promising results as the most 
effective methods59(Table 2).

Hormone replacement therapy 
Typically, it is common practice to provide physiological 
replacement of ovarian steroid hormones until the age of 
natural menopause around 50. The approach to HRT in 
younger women varies slightly from that in older women, 
with the primary objective being to enhance overall 
quality of life.60 Young women may require a higher 
estrogen dose, and considerations for sexual function may 
necessitate vaginal estrogen and androgen replacement. 
Conjugated equine estrogen and 17 beta-estradiol have 
consistent effects on hot flashes.61 Transdermal estrogen 
offers rapid action and may reduce the risk of thrombosis. 
Subcutaneous estrogen replacement involves placing 
estradiol pellets, and testosterone implants may be 
included if indicated. Topical vaginal estrogen in various 
forms can be effective, and progestins vary in potency 
and route of administration.62 Androgen replacement, 
such as transdermal testosterone administration, may 
be considered for persistent fatigue and loss of libido 
despite optimized estrogen replacement.63 HRT should 
be continued until natural menopause, and then the dose 
may be tapered to postmenopausal levels or stopped 
based on individual risks and needs. Clinicians should 
be knowledgeable about diagnosing and treating POF to 
prevent unnecessary health risks such as breast cancer, 
endometrial hyperplasia, thrombotic stroke, and venous 
thromboembolism for affected women later in life.64

In vitro activation 
One novel strategy for reviving the dormant primordial 
follicles found in ovaries affected by POF is the concept 
of IVA. This theory has been supported by recent 
developments in our knowledge of the function the Hippo 

Table 2. Summarizing the different therapies and techniques

Therapy/Technique Description Reference

Hormone replacement therapy (HRT) Physiological replacement of ovarian steroid hormones until natural menopause 60-64

In vitro activation (IVA) Disrupting the Hippo signaling pathway to stimulate dormant primordial follicles 65-69

Mitochondrial activation Using pharmacological agents like CoQ10, resveratrol, melatonin, and rapamycin to restore mitochondrial function 70-73

Mitochondrial transfer
Novel techniques like pronuclear transfer, spindle transfer, and germline mitochondrial energy transfer to 
replace defective mitochondria

74-84

Stem cell therapy
Using mesenchymal stem cells (e.g., from bone marrow, adipose tissue, menstrual blood, umbilical cord) to 
regenerate ovarian function

85-94

Platelet-rich plasma (PRP) therapy Intraovarian injection of autologous PRP to stimulate follicular growth and ovarian rejuvenation 95-105

Exosome therapy Using extracellular vesicles (exosomes) derived from various stem cell sources to modulate ovarian function 106-120
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signaling pathway plays in triggering these latent follicles, 
and it may have important therapeutic ramifications for 
POF patients.65 Although there have been worries about the 
premature activation and depletion of the follicle reserve, 
dormant follicles have been stimulated by disrupting 
the Hippo pathway through physically breaking up the 
ovaries. While a decrease in the number of follicles was 
observed post-grafting, research using mouse ovaries has 
shown that fragmenting the tissue and then reinserting it 
resulted in increased expression of key Hippo signaling 
genes and a higher proportion of late secondary and 
antral follicles.66 Similarly, studies using Akt-stimulating 
drug-treated damaged secondary mouse follicles 
also showed increases in follicle numbers. Additional 
studies have shown that AKT regulates the activation of 
primordial follicles, which is mediated by YAP, a crucial 
downstream effector in the Hippo signaling pathway.67 In 
human experiments, tissue strips were transplanted into 
immune-deficient mice after human ovarian tissue cubes 
were fragmented and Akt activation was applied. This 
resulted in the development of antral follicles. Following 
ovarian tissue collection and fragmentation, two days of 
in vitro Akt therapy, and autotransplantation beneath the 
Fallopian tube serosa, 27 POF patients underwent this 
procedure. Five patients had mature oocytes extracted, 
and one patient gave birth to a live child. Eight patients 
demonstrated follicular growth.68 One could reasonably 
theorize that the positive effects of injecting PRP into the 

ovaries on ovarian function may result from changes in 
the Hippo pathway caused by the physical disruption of 
the ovarian tissue during the injection, rather than from 
the intraovarian growth factors as previously suggested. 
This speculation is based on the knowledge of the Hippo 
signaling pathway and its importance in the development 
of ovarian follicles (Figure 1).69

Mitochondrial activation
Researchers have been focusing more and more on using 
pharmacological methods to restore mitochondrial activity 
in recent years. Coenzyme Q10 (CoQ10), resveratrol, 
melatonin, and rapamycin are among the nutrients that 
are accessible for mitochondria. It has been demonstrated 
that CoQ10, an element of the mitochondrial electron 
transport chain and a cellular antioxidant, lowers ovarian 
atresia, increases mitochondrial activity, and restores 
oocyte mitochondrial gene expression. Renowned for 
its anti-aging characteristics, resveratrol has been shown 
to slow down the aging process of ovaries and promote 
oocyte maturation in vitro. However, because of its 
anti-deciduogenic activity, which may lower the clinical 
pregnancy rate, routine clinical use is not advised.70,71 It 
is well known that melatonin has antioxidant qualities 
that target mitochondria. According to a published 
study, melatonin can prevent telomerase activity, increase 
antioxidant capacity, and activate sirtuin1 to postpone 
ovarian aging.72 Additionally, it has been discovered 

Figure 1. In vitro activation in primary ovarian failure. While PTEN keeps follicles dormant, ovarian cortex fragmentation upsets the Hippo signaling pathway with 
polymerization of globular actin (G-actin) to filamentous actin (F-actin), dephosphorylating YAP and TAZ to stimulate the transcription of growth factors (GFs), 
which in turn increases PI3K activity. Activation of the PI3K complex activates PIP2 to PIP3, which results in increased Akt expression. mTOR is upregulated by 
phosphorylated Akt, which causes primordial follicle activation. In order to encourage the activation of primordial follicles, activated Akt also dephosphorylates 
and inhibits the functions of FOXO3a. FOXO3: Fork head box O3, Akt: Protein kinase B, mTOR: mammalian target of rapamycin, PI3P: phosphatidylinositol 
(3,4,5)-trisphosphate, PI2P: phosphatidylinositol 4,5-bisphosphate, PI3K: phosphoinositide 3-kinase, RTK: Receptor tyrosine kinase, PTEN: Phosphatase and tensin 
homolog, GFs: growth factors, YAP: yes-associated protein, TAZ: transcriptional coactivator with PDZ-binding motif
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that rapamycin promotes mitochondrial rejuvenation 
and autophagy. It has been shown to suppress the 
cyclophosphamide-induced hyperactivation of the PI3K–
Akt–mTOR signaling pathway, protecting the ovarian 
reserve from developing into POF and halting the activation 
of primordial follicles.73 The treatment of infertility 
with various mitochondrial transfer methods has been 
investigated. Research has demonstrated that allogeneic 
ooplasmic transfer in human oocytes can successfully 
produce pregnancy and a live baby.74 However, because of 
the hazards associated with heteroplasmy, the possibility 
of mitochondrial disorders spreading, and the likelihood 
of autism and Turner syndrome following transplantation, 
this practice has been discontinued.75 Pronuclear transfer 
(PNT), spindle transfer, and germinal vesicle (GV) 
transfer are examples of novel nuclear transplantation 
techniques that have been proposed in reaction to these 
discoveries.76 In a spindle transfer procedure, the spindle 
is removed and placed inside an oocyte donor that has 
been enucleated.77 A 2016 study documented the effective 
use of this procedure to deliver a kid for a lady with Leigh’s 
Syndrome, a rare mitochondrial disorder.77 GV transfer 
has been utilized to treat aneuploidy in infertile women by 
improving meiotic resumption and oocyte maturation.78 
It’s crucial to remember, though, that mitochondria close 

to the GV might be transferred into oocytes that have 
been rebuilt, resulting in mitochondrial heterogeneity that 
might have a deleterious effect on progeny. Consequently, 
it is imperative that all mitochondria be removed from 
patients, even though this is still difficult with GV transfer.79 
In conclusion, even if mitochondrial transfer treatments 
appear to be a promising treatment for infertility, one must 
carefully weigh the hazards involved. Pronuclei from one 
zygote with aberrant mitochondrial DNA (mtDNA) are 
transferred to another zygote with normal mtDNA through 
the process of PNT.80 Ethical concerns about the possible 
loss of zygotes during the process limit the use of PNT.81 
Autonomous germline mitochondrial energy transfer 
(AUGMENT) was proposed as a solution to these issues. 
During intracytoplasmic sperm injection, AUGMENT 
involves the extraction and transport of mitochondria 
from oogonial stem cells into the oocyte.82 Despite the 
fact that Oktay et al reported high rates of fertilization 
and embryonic scoring in women receiving AUGMENT 
therapy, there are insufficient conclusive clinical trials to 
support the technique’s efficacy.83 Significantly, a recent 
randomized controlled research raised concerns about the 
long-term efficacy of AUGMENT therapy by finding that 
mothers who received it had children with lower mtDNA 
content than the control group (Figure 2).84

Figure 2. The AUGMENT technique's individual steps are schematically drawn. 1. Under general anesthesia, cortical ovarian tissue is obtained by laparoscopic 
ovarian biopsy. 2. The obtained ovarian tissue, which contains a mixture of different cell types, is analyzed to select the DDX4-positive oocyte PC population from 
a cell suspension. 3. The oocyte precursor cells are pelleted by centrifugation to release mitochondria. 4. The patient's released mitochondria are used to prepare 
a suspension. 5. This suspension is injected alongside the spermatozoon during ICSI. 6. The zygote is cultured in vitro until the blastocyst stage. 7. A good quality 
embryo is selected for embryo transfer. DDX4, also known as DEAD-box helicase 4, is a protein that plays a crucial role in germ cell development, particularly in 
the development of oocytes (immature eggs) in females. DDX4-positive oocyte PC likely refers to the presence of DDX4 protein in primordial germ cells (PGCs) 
or oocytes
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Stem cell therapy
For those suffering from polycystic ovarian syndrome, 
stem cell therapy may be able to restore ovarian function 
and fertility. Early, undifferentiated cells called stem 
cells have the amazing capacity to self-renew, multiply 
endlessly, and specialize into a variety of cell types.85 Based 
on where they came from, they are classified as adult stem 
cells (ASCs), induced pluripotent stem cells (iPSCs), 
and embryonic stem cells (ESCs). A particular kind of 
ASC called mesenchymal stem cells (MSCs) is obtained 
from bone marrow, adipose tissue, menstrual blood, 
the umbilical cord, amniotic fluid, and the placenta.86 
Homing, differentiation, and paracrine stimulation are the 
mechanisms by which stem cells exert their therapeutic 
effects. Physiologically active molecules, such as growth 
factors, cytokines, regulatory factors, and signal peptides, 
are released during paracrine signaling and can have a 
positive effect on adjacent cells. This process promotes 
the anti-apoptotic, anti-fibrotic, angiogenic, anti-
inflammatory, and immune-regulatory processes that 
aid in the healing of damaged ovaries.87 Despite the great 
potential for differentiation that ESCs show, the difficult 
ethical issues surrounding the destruction of blastocysts 
prevent ESCs from being used in clinical settings. On the 
other hand, stem cells from human somatic tissues, or 
iPSCs, present a viable path toward therapeutic application 
devoid of moral dilemmas. Of specific note, research has 
shown that human iPSCs can differentiate in vitro into 
human primitive germ-like cells (hPGCLCs), and under 
certain conditions, these cells can further differentiate 
into oogonia/gonocyte-like cells.88 Research has indicated 
that the administration of stem cells, namely bone marrow 
stem cell (BMSC) injection in mice, can lower free stromal 
hormone (FSH) levels and raise estrogen and follicle counts 
via promoting the release of vascular endothelial growth 
factor (VEGF). Furthermore, it has been discovered that 
BMSCs prevent granulosa cell death by controlling the 
expression of particular genes.89 Adipose-derived stem 
cells (ADSCs) present an attractive therapeutic option 
due to their pluripotency and ease of accessibility. Studies 
have indicated that the implantation of ADSC triggers 
angiogenesis, replenishes the corpus luteum and follicle 
count, and facilitates the restoration of ovarian damage.90 
Despite ethical debates, MSCs produced from menstrual 
blood are becoming more and more popular because of 
their low immunological rejection and toxicity. According 
to earlier research, MSCs improve POF by preventing 
granulosa cells from dying and by increasing the release of 
fibroblast growth factor 2.91 Mesenchymal stem cells from 
the umbilical cord (UC-MSCs) are commonly employed 
in the management of post-ovarian failure (POF) and 
have demonstrated the ability to prevent ovarian fibrosis 
in POF rats by controlling the differentiation of ovarian 
stromal cells via the transforming growth factor-β/
Smad3 signaling pathway.92 In vitro, human amniotic 
fluid stem cells (AFSCs) and amnion mesenchymal stem 

cells (AMSCs) have both demonstrated potential for 
growing into primordial follicle oocytes. Furthermore, 
it has been found that in rats with POF, AMSCs reduce 
the expression of inflammatory cytokines, which reduces 
ovarian inflammation. Notably, pretreatment of AMSCs 
with low-intensity pulsed ultrasound has been shown 
to enhance their anti-inflammatory capabilities.93 In the 
context of potential risks associated with stem cell therapy, 
tumorigenicity emerges as a primary concern. Allogeneic 
transplantation introduces the risk of immune rejection 
and gives rise to ethical considerations. Furthermore, the 
elevated cost of these procedures constitutes a significant 
obstacle to their widespread clinical implementation. To 
mitigate these concerns, it is imperative to subject stem 
cell therapy to additional validation through meticulously 
planned, controlled, and extended clinical trials. These 
trials play a crucial role in establishing the safety and 
effectiveness of stem cell therapy across a range of clinical 
applications.94

PRP Therapy for the Treatment of POF
Treating POF offers new issues that can be addressed using 
the innovative technique of intra-ovarian PRP infusion. 
PRP is made by centrifuging patient peripheral blood, 
which contains large amounts of platelets. The presence 
of α-granules is what determines how effective PRP is.95 
Significantly more proteins, hormones, and growth 
factors are present in these granules, and when these are 
released, they promote cell division and proliferation. 
Moreover, significant amounts of hormones and growth 
factors are released by active platelets, which support 
anabolism, angiogenesis, and inflammation control. These 
processes enable tissues to mend and regenerate quickly. 
Notably, GDF-9, which is discovered to be mutated in 
POF patients and is implicated in oocyte maturation, is 
present in PRP.96 PRP has been shown in numerous trials 
to stimulate primitive and primary follicle development 
into the presinus stage.97 Because of their correlation with 
preantral and antral follicles and relative stability during 
the menstrual cycle, AMH levels have been utilized as a 
primary marker for assessing the effectiveness of PRP.98 
Furthermore, PRP has demonstrated efficacy in speeding 
up angiogenesis and decreasing ovotoxic chemical-
induced atresia and degeneration in normal follicles.99 
Pantos et al,100 were the first to use PRP in human ovaries 
for clinical purposes. They administered intraovarian PRP 
injections to eight perimenopausal women. The study’s 
findings demonstrated that all patients’ menstrual periods 
and oocyte retrieval recovered after IVF treatment. PRP 
has also been used to boost the vascular density of grafts 
during autologous ovarian transplants due to its beneficial 
effects on ovarian vascularization.101 Studies have shown 
that after getting PRP treatment, patients with POF were 
able to conceive naturally through IVF cycles. In every 
participant studied, these results were linked to decreased 
levels of luteinizing hormone (LH) and follicle-stimulating 
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hormone (FSH), as well as raised levels of AMH and 
antral follicle count (AFC).96 Furthermore, 23 individuals 
(7.4%) experienced spontaneous conception following 
PRP treatment, according to a study assessing the impact 
of the therapy on ovarian reserves and IVF outcomes in 
311 patients with POF.102 Chao-Chin et al. coupled PRP 
with gonadotropin injections into the ovarian stroma 
to improve the clinical outcome. For a patient who had 
previously responded badly to gonadotropins, this 
therapeutic method led to the successful resumption 
of menstrual cycles and pregnancy.69 Autologous PRP 
intraovarian injection has several benefits, such as low 
immunogenicity, good storage qualities, and ease of 
handling. On the other hand, severe cell proliferation 
events, infection, and unidentified harmful effects on 
the embryo are possible hazards connected with PRP 
therapy.103 The discovery that certain PRP samples tested 
positive for microbial growth highlights how crucial it 
is to identify and neutralize blood-borne infections in 
samples. Although PRP preparations have demonstrated 
antibacterial qualities, high-intensity cell proliferation 
events have the potential to cause cancer because they 
differentiate stem cells inside the ovaries.104 Furthermore, 
the high concentrations of hematopoietic cells that PRP 
introduces into the implantation environment run the 
danger of having a deleterious effect on the embryo.105 As 
a result, more research is required to present conclusive 
proof of PRP therapy’s safety.

Exosome Therapy
Exosomes, also known as Exos, are a subclass of EVs, 
a broad category of nanoscale structures released by 
different cell types in a way that is conserved in all living 

things. EVs have the ability to transfer genetic information 
and molecular signals between donor and recipient cells, 
which can affect the bioactivity and responsiveness of the 
cells.106 EVs are classified as exosomes, micro-vesicles 
(MVs), and apoptotic bodies (Abs) according to their size, 
composition, and mode of biogenesis. The largest EVs, 
known as apoptotic bodies, are formed during apoptotic 
changes through cellular breakdown. They have an 
irregular structure and range in diameter from 1000 to 
5000 nm.107 They consist of various cell components, such 
as nuclear fragments and organelles. Microvesicles are 
secreted from both healthy and injured cells in response to 
a range of stimuli and insults. They can range in size from 
100 to 1000 nm. They consist of exovesicles, shedding 
vesicles, microparticles, and ectosomes. The endosomal-
origin exosomes, which range in size from 30 to 100 nm, 
are isolated by sucrose gradient centrifugation (1.12–1.19 
g/mL)108(Figure 3). Different cell types and extracellular 
fluids in the body, including immune cells, BMSCs, MSCs, 
breast cancer cells, platelets, and synovial fluid, secrete these 
specialized double-lipid membrane nanovesicles. These 
nanovesicles can transfer biologically active molecules 
like proteins, lipids, growth factors, and carbohydrates 
to target cells and control their function. When Pan and 
associates found that released microvesicles externalize 
receptors during erythrocyte formation in 1983, the word 
“exosome” was first used.109 Exosomes have drawn more 
interest in the last 10 years because of their potential for 
both diagnosis and treatment in a number of illnesses.110 
The formation of intracellular MVBs containing 
intraluminal vesicles (ILVs) and the stimulation of MVBs 
to fuse with the plasma membrane in order to release their 
cargo into the extracellular environment or be degraded 

Figure 3. Classification of extracellular vesicles (EVs): three distinct classes of EVs are illustrated. Exosomes: produced by the endocytic pathway, they are 
released through exocytosis and have a diameter ranging from 30 to 100 nm. Microvesicles (MVs): released by budding from the plasma membrane, they have 
an irregular shape and a diameter ranging from 100 to 1000 nm. Apoptotic bodies: released through blebbing by cells going through apoptosis, they are larger 
than 1000 nm in size
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by lysosomal activity are the three main steps involved 
in the formation and release of exosomes. The first step 
involves the generation of early endosomes (endocytic 
vesicles) from the cell membrane110. Because exosomes 
are derived from endosomes, they contain a variety 
of proteins; these include heat shock proteins (Hsp60, 
Hsp70, Hsp90), tetraspanins (CD9, CD63, CD81, CD82), 
membrane transport and fusion proteins (GTPases, 
Annexins, flotillin), and lipids with structural elements 
like sphingophospholipids, sphingolipids, cholesterol, 
ceramide, and saccharide groups. Exosome-specific 
proteins can act as distinguishing indicators for exosome 
identification111,112 (Table 3). Exosomes are produced by 
the majority of cells and found in biofluids like blood, 
saliva, urine, amniotic fluid, follicular fluid, uterine fluid, 
cerebrospinal fluid, ascites fluid, bronchoalveolar lavage, 
and all types of cells in different in vitro culture systems. 
They are widely considered as powerful paracrine and 
autocrine mediators in cellular communication.113 
Numerous functions, such as cell division and apoptosis, 
cellular upkeep, metabolism, translational activity, 
angiogenesis, tissue repair, immune modulation, 
immune cell processing of antigens, blood coagulation, 
reproduction, tumor pathogenesis, inflammation spread, 
autoimmune diseases, neurodegenerative diseases, and 
infectious diseases have all been shown to be impacted 
by exosomes. Exosomes have the potential to be used 
as revolutionary therapeutic bio-shuttle drug delivery 
systems because of their potential as diagnostic indicators 
in diseased circumstances.114-116 More than 75% of the 
EVs in the blood are PLT-Exos, the main subtype of 
EVs released by platelets12. PLT-Exos treatment has been 
demonstrated in rodent models of POF to improve fertility 
rates by shortening the time to conception, reestablish 
the estrous cycle, raise hormone and AMH levels, 
increase follicle count, and prevent follicular atresia.17 
Studies conducted in vitro have shown that the primary 

mechanism of ovarian rejuvenation brought about by 
exosome therapy takes place at the granulosa cell level, 
which is important in the pathophysiology of post-ovarian 
fibromatosis. This mechanism is linked to upregulated 
B-cell lymphoma 2 (Bcl2) and phosphoinositide 3 kinase–
protein kinase B (PI3K/Akt) signaling pathways, along 
with downregulated SMAD and Bcl-2 associated X protein 
(Bax) signaling pathways. The net effect is increased 
proliferation and decreased apoptosis.117 Additionally, 
it has been demonstrated that a number of microRNAs 
included in PLT-Exos, including miR-144-5p, miR-126-
3p, and miR-369-3p, suppress granulosa cell death via 
diverse methods.118 Apart from the impact of exosome 
therapies on granulosa cells, it has also been observed that 
the transplantation of UC-MSCs in POF rats attenuates 
ovarian tissue fibrosis and enhances the differentiation 
of theca cells. This helps to restore the function of the 
ovaries. Exosome therapy is now recognized by many 
writers and researchers as a promising therapeutic option 
for POF because of the encouraging study data that is 
currently accessible.119 Exosomes have been shown to 
have lower immunogenicity, less tumorigenicity, and no 
ethical problems when compared to stem cells and PRP. 
However, their safety and efficacy must be evaluated in 
human clinical studies before being considered in POF 
patients (Table 4).120

Conclusion
A condition with a diverse origin, POF affects up to 
3.7% of all females worldwide. Although infertility is 
seen to be the most crippling aspect of the illness, HRT 
can aid with its symptomatology and long-term health 
implications. The reinterpretation of ovarian reserve as a 
dynamic, rather than static, cell population has prompted 
research into novel biological strategies for ovarian 
rejuvenation, including PRP, exosome therapy, IVA, stem 
cell therapy, microRNAs, and mitochondrial targeting 

Table 3. Characteristics of extracellular vesicles

Specification Exosome Microvesicles Apoptotic bodies Reference

Size 30-100 nm 100-1000 1000-5000 107,108

Intracellular origin Endosomal pathways (MVBs) Plasma membrane
Plasma membrane 
during apoptosis

107

Appearance in 
electron microscopy

Round shaped Heterogeneous Heterogeneous 108

Sucrose gradient 1.12-1.19 g/mL 1.04-1.07 g/mL 1.16-1.28 g/mL 108

Markers
Tetraspanins (CD9, CD63, CD81, CD82), TSG101, Alix, flotillin, 
heat shock proteins (Hspa8, Hspa60, Hspa70, Hspa90), ESCRT 
components, MHC-I and MHC-II molecules

Non-specific markers; 
Integrins, selectins, CD40, 
and Annexin V positivity 

used must: ARF6, VCAMP3

High PS level 
TSP C3b Annexin 

V-positivity

109-111

Internal contents

mRNA, miRNA, ncRNA, tRNA, siRNA and rarely DNA, Cytoplasmic 
and membrane proteins (actin, myosin, and syntenin and …), lipids 
(phosphoglycerides, cholesterol, ceramide, sphingomyelin, and 
fatty acid chains), carrier proteins like albumin metabolic enzymes 
(GAPDH, LDHA, PGK1, PKM, PK, ATPase, Enolase and aldolase)

mRNA, miRNA, ncRNA, 
cytoplasmic and membrane 

proteins, and thermal 
shock proteins

Cellular organelles 
and nuclear 
fragments

110,112

Detection method
Flow-cytometry, electron microscopy, Nanoparticle tracking analysis, 
Western blotting assay

Flow-cytometry and 
electron microscopy

Flow-cytometry and 
electron microscopy

109
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therapies. Intraovarian PRP administration is one of these 
experimental techniques that has been well explored, is 
less invasive, and has demonstrated encouraging efficacy, 
especially in inducing spontaneous conception (7.4%–
10%). Furthermore, it has been demonstrated that PRP 
and IVA are effective in generating conception through 
in vitro fertilization (IVF), with success rates of 4% and 
7%–8%, respectively. However, there hasn’t been much 
research done on IVA. Given that POF patients are not 
suitable candidates for IVF therapy using their own 
oocytes, these techniques may provide them hope for 
genetically related offspring. Compared with the expensive 
stem cell-based therapies, PRP and IVA treatments are less 
expensive. Statistics from the literature on POF-afflicted 
women show that stem cell transplantation has a limited 
success rate (0–14.3%, total of 2 cases) in helping women 
become pregnant. Autologous mitochondrial replacement 
therapy has not been investigated and has not shown any 
benefit in patients with low oocyte quality. In preclinical 
models, emerging biological methods like exosomes and 
microRNAs show promise in changing disease, but they 
still need to be further validated in clinical trials. To sum 
up, biological treatments for POF have potential but are 
still in the early stages of research. The limited duration 
of follow-up research on clinically used treatments, such 
PRP, IVA, and stem cell transplantation therapy, prevents 
us from making any firm conclusions on the safety or 
duration of ovarian rejuvenation resulting from these 
methods. Because there are no standardized procedures 
for the manufacture and delivery of PRP, it is difficult to 
compare trials. Furthermore, it is challenging to create 
standardized guidelines for the choice of stem cell types or 
the necessary interval between stem cell transplantations 
due to the dearth of data on the procedure. Consequently, 
to evaluate the effectiveness, safety, and repeatability of 
these processes, carefully planned, supervised clinical 
studies are required. Clinical fertility indices, such as the 

number of take-home kids and the attainment of clinical 
pregnancy, should be used to determine success. However, 
ovarian reserve indices, such as AMH and AFC, may 
also yield useful information. Even though it is ideal, the 
isolated increase in hormone levels cannot demonstrate 
the efficacy of these therapies because standard POF 
treatment with HRT can yield the same results. Eight 
clinical trials using PRP application, three involving 
IVA, and five involving stem cell transplantation are now 
underway, and the results should be known within the 
next two years, according to ClinicalTrials.gov. Meticulous 
experimental and clinical designs will shed light on the 
safety and effectiveness of these novel therapies for 
infertility in POF.
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