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Introduction
It has been illuminated that CKD influences drug 
pharmacokinetics.1 Interestingly, accumulating evidence 
from epidemiological and clinical studies suggests that 
sex-related differences exist in the prevalence, course, and 
progression of chronic kidney disease (CKD) in adults.2 In 
adults, the prevalence, incidence, and disease progression 
are higher in men than in women.3 Among children, girls 
have been reported to have a higher incidence rate of CKD, 
defined as estimated glomerular filtration rate (eGFR) < 60 
mL/min/1.73 m2, than boys because of a faster decline 
in GFR compared with boys. Certain risk factors for the 
development and progression of CKD including frequent 
urinary tract infection (UTI) and autoimmune-related 
glomerular diseases such as lupus nephritis are also higher 
in girls than in boys.4-6 Similarly, the mortality rate is also 
substantially higher in girls treated with renal replacement 
therapy (RRT) compared to boys.7-9 Moreover, significant 
sex differences also exist in the pharmacokinetics and 
pharmacodynamics of drugs between men and women,10-13 
but data on sex differences in pediatric pharmacokinetics 
and drug dosing are lacking.

Children’s doses cannot be extrapolated directly 
from adult studies as the pharmacokinetics of many 

drugs are different in children compared to adults. 
Pharmacokinetics vary with sex, age, rapid changes in 
size, body composition, and organ function, particularly 
during early development.14,15 A change in the 
pharmacokinetics during development can affect drug 
elimination and exposure predisposing the child to over 
or under medication leading to severe adverse events or 
treatment failure.2,3

The lack of pharmacokinetics knowledge complicates 
finding the correct dosing for the management of children 
with CKD. This review addresses the influence of sex 
differences on the pharmacokinetics of drugs and on the 
incidence of disease progression in children with CKD. 

Electronic databases, PubMed, Embase, and Web of 
Science have been searched since inception, using Mesh 
terms English for sex differences in the management and 
pharmacokinetics of drugs in children and adolescents 
with CKD. All studies included were published from 
inception. Of the 70 reviewed articles, 36 met the inclusion 
criteria and were included in analyses. 

Sex differences in genetic and epigenetic process
Studies have documented genetic dispositions for certain 
diseases associated with CKD in females.16-18 Skewed X 
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Abstract
Effective optimal pharmacotherapy requires a comprehensive understanding of the 
drug’s pharmacokinetic properties. Chronic kidney disease (CKD) influences medication 
pharmacokinetics. However, whether sex differences exist in the pharmacokinetics of drugs for 
children with CKD is unknown. The primary aim of this article was to evaluate the effect of 
sex on pharmacokinetics of drugs commonly used for CKD treatment in children. Secondary 
outcome was to address the impact of sex in CKD disease progression. Electronic databases, 
PubMed, EMBASE, Google Scholar, and Web of Science were searched from inception, using 
Mesh terms in English for sex differences in the pharmacokinetics of drugs in children with 
CKD. No studies have documented sex-related differences in the pharmacokinetics of drugs for 
the treatment of CKD in children. As a consequence, it is difficult to predict the effect of sex on 
pharmacokinetics by extrapolating data from adult studies to children. Evidence to date suggests 
that girls generally have a higher prevalence and disease progression of CKD when compared to 
boys regardless of age. Understanding the pharmacokinetics and pharmacodynamics of drugs 
provides practical consideration for dosing optimal medication regimens. Future kinetic studies 
are needed evaluating the effect of sex on the pharmacokinetics and pharmacodynamics of 
drugs in children with CKD.
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chromosome inactivation has been shown to predispose 
females to several autoimmune diseases including lupus 
nephritis, scleroderma, rheumatoid arthritis, Sjogren’s 
disease, and myasthenia gravis.16 Many genes possess 
hormone response elements in the region of their target 
genes, which can interfere with the transcription of 
target genes. The expression of DNA methylation is also 
under sex hormones (estrogens and androgens) control.19 

Hormonal and genetic factors have also been shown to play 
a relevant role in explaining these differences in CKD, as 
demonstrated by several experimental studies, showing an 
overall protective role for estrogens and progesterone.20-22 
Environmental exposures to toxins, air pollution, chemical, 
microbial, allergens, and unhealthy dietary habits can 
increase the risk of developing CKD through DNA 
methylation, suggesting this environmental interaction or 
epigenetic dysregulation may play an important role in the 
sex-related differences in CKD amongst children.18,19 

Current screening standards including measurement 
of eGFR and urinary biomarkers such as beta-2 
microglobulin and kidney injury molecule (KIM-1) are 
widely used for CDK detection, but it is difficult to predict 
CKD precisely.23 Evidence-based medicine requires 
gender heterogeneity to be taken into account in CKD 
deterioration to inform the risk assessment, monitoring, 
and prognosis.

Sex differences in susceptibility to CKD 
The majority of glomerular diseases show a male 
bias, except lupus nephritis, which is strongly female-
predominant.24 Studies have shown that collagen-vascular 
diseases and autoimmune disorders affect females three 
to ten times more than males.25 Environmental stressors-
induced epigenetic alteration such as chemical exposures, 
drugs, and infections during pregnancy, ureter-placental 
hypoxia, and maternal under-nutrition may lead to 
prematurity and low birth weight infants and the risk of 
long-term hypertension and metabolic syndrome leading 
to the development of CKD, in children and adults.18,19,26,27

UTI is also strongly sex-biased, with girls being 20 to 
40 times to have a UTI than boys of the same age.5,6,28 
Being female significantly influences immune response 
to diseases at mucosal surfaces. Sex hormones, sex 
differences, sex chromosomes, and sexual dimorphism all 
contribute to the development of CKD.16,17 

Sex differences also exist in susceptibility to metabolic 
syndrome with female children being at a higher risk of 
developing obesity, dyslipidemia, type 2 diabetes, and 
CKD.29-31 Variable epigenetic background, diet, levels of 
physical activity, and levels of estrogens may influence the 
higher prevalence of metabolic syndrome in females than 
in men.32

Sex differences in renal physiology
Clinical studies have demonstrated sex differences in 
kidney size morphology and hemodynamic functions. 

Total renal mass and the renal cortex and proximal tubules 
are larger in males than in females.20 The contribution of 
these structural differences to sex-related variation in 
renal physiology may also account for a higher incidence 
rate of CKD progression in female children. 

Sex differences in the pharmacokinetics of drugs 
frequently used to treat CKD in children
In contrast to adults, there is no information in 
the literature about sex-related differences in the 
pharmacokinetics of drugs for the treatment of CKD in 
children. As a consequence, it is difficult to predict the 
impact of sex on pharmacokinetics by extrapolating data 
from adult studies in children. 

Influence of CKD on medication pharmacokinetics
CKD influences multiple pharmacokinetic parameters, 
which needs to be considered for commonly used 
medications in this population.1 Understanding the 
pharmacokinetics (PK) properties and the study of the 
absorption, distribution, metabolism, and excretion 
(ADME) processes of a drug is essential for effective 
optimal pharmacotherapy in patients with CKD.

The pharmacokinetics of many drugs in children is 
different compared to adults.12 Children have a lower body 
weight and organ size and faster growth and development 
during early development, which can significantly affect 
drug absorption, distribution, and elimination.12

In general, the renal drug clearance depends on GFR, 
tubular reabsorption capacity, and tubular excretion. In 
CKD, in the absence of pharmacokinetics properties, 
drugs that are primarily excreted by GFR such as 
aminoglycosides, dose adjustment can be made by either 
decreasing the initial dose or increasing the dosing 
interval. However, in some patients with active infection, 
a higher initial loading dose is required to rapidly achieve 
therapeutic concentration.33 A loading dose decreases the 
time to achieve the target concentration. The plasma drugs’ 
half-time (t1/2) is often prolonged in adult patients with 
CKD because of reduced GFR. Increasing the t1/2 delays 
the time to achieve steady-state plasma concentrations 
and results in higher plasma concentrations. Loading 
dose decreases the time to achieve the target therapeutic 
plasma concentration (Figure 1). An increase in a drug’s 
t1/2 prolongs the time to achieve steady-state plasma 
concentrations with maintenance dosing. Failure to reduce 
the maintenance dose or frequency in CKD patients with 
the longer t ½ may predispose them to adverse drug 
reactions (Figure 2).

The volume of distribution (Vd) and clearance 
(CL) are the two most important parameters of the 
pharmacokinetics of drugs. Both Vd and CL also changes 
in patients with CKD.1 

In general, drug distribution is dependent on the 
extent of protein binding, lipophilicity or water solubility, 
renal blood flow, membrane permeability, and tissue 
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uptake.9-12,16 Increased protein binding decreases the free 
concentration and fraction of drugs, thereby limiting the 
capacity of the active drug to diffuse more easily across 
the cell membranes. In CKD, uremic toxins displace some 
drugs from protein binding sites leading to increased 
unbound fraction. Likewise, phenytoin does not need 
dose adjustment in patients with reduced GFR, however 
free drug concentration should be monitored instead of 
total drug concentration in CKD patients.34

Table 1 summarizes the pharmacokinetic parameters 
and the impact of sex on pharmacokinetics of commonly 
administered drugs in adults with stage 1-4 CKD.35-58 

Relevance to patient care and clinical practice 
Impaired renal function can significantly alter the 
pharmacokinetics and pharmacodynamics of drugs, 
putting patients at risk for drug toxicity or treatment 
failure if appropriate dosing adjustments are not applied. 
The incidence rate and progression of CKD is higher in 
girls than in boys worldwide. There is no information 
in the literature about sex-related differences in the 
pharmacokinetics of drugs for the treatment of CKD in 
children. 

Understanding the pharmacokinetics and 
pharmacodynamics of drugs provides practical 
consideration for dosing optimal medication regimens.

Discussion
The incidence rate and progression of CKD is higher in 
girls than in boys worldwide. There is no information 
in the literature about sex-related differences in the 
pharmacokinetics of drugs for the treatment of CKD 
in children. 

Conclusion
The prevalence of CKD is higher in girls than boys but 
reverses when they reach adulthood, possibly owing to the 
protective effects of estrogens. More girls than boys start 
RRT because of faster CKD progression and because they 
are more likely to experience frequent UTIs. Girls are at 
greater risk of CKD progression and CVD disease. 

In contrast to adults, there is no information in 
the literature about sex-related differences in the 
pharmacokinetics of drugs for the treatment of CKD 
in children. 

The lack of pharmacokinetic studies in children with 
CKD makes it very difficult to predict the optimum 
therapeutic dosing. Prescribing drug doses extrapolated 
from adult studies increases the risk of adverse events due 
to overmedication or lead to treatment failure due to sub-
therapeutic exposure.

Future kinetic studies are eagerly needed to anticipate 
better and model drug-response relationships in 
boys and girls. 
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Figure 1. Loading dose decreases the time to achieve target concentration (Used with permission, Robert et al. 7

Figure 2. An increase in a drug’s t1/2 prolongs the time to achieve steady-state plasma concentrations with maintenance dosing (Used with permission, Robert et al.7
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