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Introduction
Inflammatory diseases cover a range of conditions 
marked by long-term inflammation, which plays a 
role in developing and advancing several diseases.1 
Inflammation is important for safeguarding organisms 
against substances and pathogens. It can also contribute 
to the progression of diverse diseases.2 This persistent 
inflammation leads to health issues such as cancer, diabetes 
mellitus, inflammatory bowel disease, obesity, rheumatoid 
arthritis, multiple sclerosis, osteoporosis, and neurological 
disorders.3 Pro-inflammatory cytokines are released when 
the inflammatory response is triggered by stimuli like 
toxic compounds (non-infectious substances), pathogens 

(viral or bacterial infections), and mechanical triggers 
(tissue injury).4-6 For instance, research has examined the 
connection between smoking and inflammatory bowel 
disease. There is evidence suggesting that tobacco usage 
might affect the progress of diseases.7

Rheumatoid arthritis is a disease characterized by joint 
inflammation and damage. It affects patients with varying 
levels of severity.8 Rheumatoid arthritis characterized by 
levels of inflammation and oxidative stress which can lead 
to increased damage, to lipids, proteins, and DNA. This 
disease is associated with levels of stress and inflammatory 
markers along, with systemic complications, premature 
mortality and significant economic burdens.8,9
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Abstract
Purpose: Rheumatoid arthritis is a persistent autoimmune condition characterized by joint 
inflammation and degradation, impacting individuals with varying degrees of severity. Chrysin 
is a natural flavonoid possessing diverse pharmacological properties and antioxidant and anti-
inflammation activities. However, chrysin encounters limitations in bioavailability due to its low 
aqueous solubility and rapid metabolism. Targeted therapy using nanoparticle systems is a novel 
approach to overcome these difficulties. 
Methods: The hyaluronic acid-decorated niosomal nanoparticles (NPs) were fabricated using the 
thin-film hydration method and characterized by various techniques (DLS, AFM, SEM, FT-IR, and 
drug release pattern analysis). The peripheral blood mononuclear cells (PBMCs) were isolated 
from blood samples of patients with rheumatoid arthritis, and various factors levels, including 
nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-10, total antioxidative 
capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), as well as the 
expression levels of TIMP1, MMP9, and RANKL genes were evaluated. 
Results: The fabricated NPs demonstrated spherical morphology with 199 ± 10.7 nm size, 0.653 
PDI, and −15.38 ± 2.8 zeta potential. The FT-IR results confirmed the successful incorporation of 
substances inside niosomal NPs. The treatment with chrysin loaded niosomal NPs successfully 
decreased the inflammatory agent (nitric oxide), inflammatory cytokines (IL-1β and TNF-α), 
and osteoclastic related genes (MMP9 and RANKL) expression level. On the other hand, the 
activity of antioxidant agents (TAC, SOD, and GPx), anti-inflammatory cytokine (IL-10), and anti-
osteoclastic related genes (TIMP1) were found to increase. 
Conclusion: Taken together, the hyaluronic acid-decorated niosomal nano drug delivery system 
was acceptable in terms of characteristics and was able to direct the chrysin in the vicinity 
of PBMCs.
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The development of Rheumatoid arthritis involves a 
combination of factors, such as predisposition, exposure 
to triggers, and abnormalities in the immune system.10 
This condition is characterized by increased stress 
and inflammatory markers leading to complications, 
premature mortality, and significant socioeconomic 
burdens.11 People with arthritis often experience a range 
of symptoms, including pain, fatigue, stiffness, and limited 
physical mobility. These symptoms significantly impact 
their quality of life.12 Moreover, rheumatoid arthritis 
is known to be a disorder that affects organ systems. It 
leads to deterioration and functional disabilities that can 
have outcomes.13 Researchers have studied the impact 
of arthritis on health conditions as well. For instance, 
individuals with arthritis have a risk of developing 
cardiovascular diseases. This highlights how the disease 
affects organs and functions within the body. Apart from 
joints, it may also affect organs like the heart, lungs, blood 
vessels, eyes, and skin. Rheumatoid arthritis is estimated 
to affect one in every two hundred individuals. Women 
are affected at rates compared to men, with a ratio of 
two to three times more cases in women. While it can 
occur in any age group; it commonly manifests between 
the ages of 50 and 59 years old.14 Individuals diagnosed 
with rheumatoid arthritis often exhibit a prevalence of 
risk factors associated with diseases such as obesity and 
dyslipidemia.15 

Early detection and accurate diagnosis are crucial for 
effective management, and disease-modifying agents, 
including biological agents, have significantly improved 
clinical outcomes.16 Over time, advancements have been 
made in the evaluation of features and understanding of 
the underlying mechanisms and therapeutic options for 
arthritis.17 Current management approaches for arthritis 
involve the utilization of tumor necrosis factor (TNF) 
inhibitors, methotrexate, and other targeted therapies.18 
While traditional synthetic drugs used for treatment can 
have effects there is promising research on plants that 
possess anti-rheumatoid arthritis properties and show the 
potential in alleviating joint pain and inflammation.19 

Chrysin, a flavonoid, possesses pharmacological 
characteristics.20 Additionally, it demonstrates effects 
in terms of heart protection, antioxidant properties, 
neuroprotection, liver protection, anti-cancer properties, 
and potential use in diabetes treatment.21 Research has 
indicated that chrysin could be a candidate for treating 
arthritis due to its inflammatory and antioxidant 
effects.22,23 One of the challenges associated with chrysin 
is its low absorption by the body due to low solubility in 
water, rapid metabolism facilitated by UGTs and SULT 
enzymes, and efficient elimination through transporters 
like BCRP and MRP2.24 To address this issue, various 
formulations have been developed to enhance the 
bioavailability of chrysin.25 Niosomes are ionic surfactant 
vesicles that can encapsulate both hydrophilic and 
lipophilic pharmaceutical compounds. Their unique 

structure allows for controlled release profiles of drugs 
and improved stability and effectiveness.26,27 

Hyaluronic acid is a polymer with properties such 
as solubility, biocompatibility, and biodegradability. 
Through chemical modifications, it can be utilized as a 
drug delivery system with characteristics.27 This occurring 
polysaccharide is found within the body. It plays a role 
in tissues by being a part of the extracellular matrix. Its 
functions include regulating the interactions between 
growth factors, maintaining tissue volume, and providing 
lubrication.28 Hyaluronic acid has been studied for its 
potential applications in the treatment of inflammatory 
diseases, providing pain relief and exhibiting desirable 
biocompatibility and biodegradability.29 Hyaluronic acid 
can bind to CD44 receptors on immune cells in the dermal 
region, making it a potential carrier for site-specific 
dermal drug delivery in rheumatoid arthritis treatment.30 

In the current study, a hyaluronic acid-decorated niosomal 
nano drug delivery system was loaded with chrysin and 
occupied to target the peripheral blood mononuclear cells 
(PBMCs) derived from rheumatoid arthritis patients and 
evaluated different factors of these cells. 

Material and Methods
Nanoparticles synthesis
Cholesterol (6 mg) and Span 60 (36 mg) were dissolved in 
methanol (6 mL) and chloroform (3 mL) and evaporated 
with a rotary evaporator at 120rpm at 60 °C for 1 hour 
to synthesize blank niosomal nanoparticles (blank Nio 
NPs). After the formation of the lipid-formed film, the 
temperature of the mixture was cooled to 24°C. The thin 
film was hydrated with phosphate-buffered saline (PBS) 
(10 mL) for 1 hour at 60 °C like the above. The final solution 
was mixed thoroughly by ultrasonication over an ice bath 
for 30 min in order to reduce the size of the synthesized 
NPs and stored at 4 °C. The chrysin loaded niosomal NPs 
(Nio-chr NPs) were synthesized with same method as 
above with addition of 2.54 mg chrysin to chloroform and 
methanol along with span 60 and cholesterol. 

To synthesized chrysin loaded hyaluronic acid coated 
niosomal NPs (H-Nio-chr NPs), 10 mL of normal saline 
containing 0.1% (w/v) hyaluronic acid solution was added 
dropwise to blank Nio-chr NPs, while the mixtures were 
stirring at ambient temperature for 1 h in order to reform 
the NPs and coating the hyaluronic acid on the NPs surface.

Morphology, size, and chemical interactions of NPs
The size, poly dispersity index (PDI), and zeta potential 
of the synthesized niosomal NPs were analyzed by 
Zeta sizer dynamic light scattering system (ZS 90, 
Malvern Instruments Ltd., Malvern, UK). The surface 
morphological properties of the synthesized niosomal 
NPs were examined using scanning electron microscopy 
(SEM, MIRA3, TESCAN, Czech). Spectral analysis of 
the compounds before and after NPs preparation was 
analysed by using a Fourier-transform infrared (FT-IR) 
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spectrophotometer (Shimadzu 8400 S, Kyoto, Japan) in the 
region of 4000-400 cm1 with spectra resolution of 4 cm-1.

Chrysin release from niosomal NPs
To determine the in-vitro drug release profile of NPs 
dialysis membrane tube (12 kDa) was used. Briefly, 10 
mL of H-Nio-chr NPs was transferred into a dialysis 
bag and placed in PBS (pH = 7.4) at 37 °C with gentle 
shaking at 100 rpm. At specific time intervals 5 mL 
of immersing buffer solution was analyzed with an 
ultraviolet spectrophotometry (PerkinElmer, Fremont, 
CA, USA) and replaced with fresh PBS. The absorbance 
of the immersed chrysin was measured at 367 nm (λmax 
of chrysin).

Study subjects
The study protocol was approved by the Ethical Committee 
of the College of Medicine, University of Kerbala. Blood 
samples were obtained from healthy controls (n = 40), and 
rheumatoid arthritis patients (n = 35) who attended the 
orthopedics outpatient, Department of Rheumatology, 
Al-Hassan Teaching Hospital, Kerbala Health Directorate, 
Kerbala, Iraq with age range between October 2023 and 
January 2024. Patients were diagnosed based on the 2010 
classification criteria for rheumatoid arthritis set by the 
European League Against Rheumatism (EULAR). Table 1 
provides the clinical and demographical data of healthy 
controls and rheumatoid arthritis patients. Smokers, 
alcoholics, and patients suffering from chronic diseases or 
receiving non-steroidal anti-inflammatory drugs, disease-
modifying antirheumatic drugs (DMARDs), and steroids 
were excluded from the study.

PBMCs isolation and culture
PBMCs were isolated by centrifugation over Histopaque 
1077 (Sigma, Germany) density gradients. Then washed 
three times PBS and re-suspended in RPMI-1640 culture 
medium supplemented with 10% fetal bovine serum 
(FBS) (Biochrom, UK), 10 μg/mL of streptomycin (Sigma, 
Germany), and 10 U/mL of penicillin (Sigma, Germany). 
 
Cell viability assay
An MTT reduction assay determined the effect of various 
doses of free chrysin, Nio-chr NPs, and H-Nio-chr NPs on 
the viability of PBMCs. Firstly, 5 × 103 cells were seeded in 
each well of 96-well plates and incubated for 24 hours at 37 
°C with 5% CO₂. The cells were treated with free chrysin 

(2.5-20 μM), Nio-chr NPs (2.5-20 μM), and H-Nio-
chr NPs (2.5-20 μM) at 37 °C with 5% CO₂. After 48 
hours, the medium containing treatment substances was 
replaced with 200 μL of MTT (Sigma, Germany) solution 
and incubated for 4 hours at 37 °C and in dark condition. 
The MTT solution was excluded from wells, and 200 μL 
of DMSO (Merck, Germany) was added to each well, 
followed by shaking on a plate shaker for 20 minutes. 
Finally, the optical density of wells was measured at 570 
nm using the EL × 800 Microplate Absorbance Reader 
(Bio-Tek Instruments), and the cell viability effects of free 
chrysin, Nio-chr NPs, and H-Nio-chr NPs were calculated 
using GraphPad Prism 8.4 software.

Nitric oxide estimation
The concentration of nitrite oxide in treated and untreated 
PBMCs supernatant was determined using measurement 
of residual nitrites by Griess’s method. PBMCs were seeded 
in 6-well plates (1 × 105 cells), then incubated for 24 hours 
and treated with free chrysin, Nio-chr NPs, and H-Nio-chr 
NPs for 48 hours at 37 °C with 5% CO₂. Also, a group of 
cells received no substances as control. Afterwards, 100 μL 
of supernatants of PBMCs culture were incubated with the 
same amount of Griess reagent (Sigma, Germany) for 20 
minutes at 24 °C in darkness. Finally, the absorbance at 450 
nm was determined with a microplate absorbance reader 
(EL × 800, Bio-Tek Instruments), and the concentration 
of nitrite was calculated from a standard sodium nitrite 
(NaNO2) standard curve. 

Anti-inflammatory and pro-inflammatory cytokine 
measurement
PBMCs (1 × 105) were seeded in a 6-well plate and 
incubated for 24 hours to attach the plates. Then PBMCs 
were treated with pure chrysin, Nio-chr NPs, and H-Nio-
chr NPs for 48 hours at 37 °C with 5% CO₂. A group of 
cells remained untreated as a control. Finally, the IL-1β, 
TNF-α, and IL-10 levels in treated and untreated PBMCs 
were evaluated through an enzyme immunoassay using the 
human ELISA Kit (Sino Biological Inc., Beijing, China).

Determination of TAC, SOD, and GPx
Total antioxidative capacity (TAC), superoxide dismutase 
(SOD), and glutathione peroxidase (GPx) levels in both 
treated and untreated PBMCs using the methodologies 
outlined by Erel,31 Marklund and Marklund,32 and Günzler 
and Flohé ,33 respectively. 

Real-time PCR
Quantitative PCR analysis was conducted utilizing 
a LightCycler instrument (Roche Diagnostics). The 
amplification protocol involved an initial denaturation 
step at 95.8 °C for 10 minutes, followed by 40 cycles with 
the following conditions for the detection of MMP9, 
TIMP1, and RANKL: 95.8 °C for 5 seconds, primer 
annealing at 58.8 °C for 10 seconds, and primer extension 

Table 1. Demographic and clinical data of healthy controls and patients with 
rheumatoid arthritis

Rheumatoid arthritis patients Healthy controls

Sex (Male/Female) 11/29 13/17

Body mass index (BMI) 24.91 ± 4.19 22.18 ± 2.07

ESR (mm/h) 58.12 ± 12.93 18.13 ± 7.83

DAS28 (28-Joint count 
disease activity score)

5.76 ± 0.94 -
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at 72.8 °C for 20 seconds. Also, GAPDH expression was 
selected to normalize the expression levels of the intended 
mRNAs. Table 2 lists the primer sequences for quantitative 
PCR. Fluorescence emitted by SYBR Green I was detected 
at the conclusion of each amplification cycle to assess the 
accumulation of PCR products throughout the cycling 
process. Following each run, melting curve profiles 
were generated to validate the specificity of transcript 
amplification. The monitoring and quantification of 
fluorescence emission readings from cycle to cycle were 
conducted utilizing the second derivative maximum 
method through Light-Cycler Software. Standard curves 
for GAPDH and other primers were established by serially 
diluting total cDNA. All determined concentrations are 
expressed relative to the concentration of the respective 
standards.

Results and Discussion 
Targeted therapy represents a personalized medicine 
approach that focuses on specific cells with minimal effect 
on healthy cells. It is based on the fact that these cells have 
specific molecular or genetic changes that distinguish 
them from normal cells.34 By targeting these changes, 
targeted therapies can selectively aim these cells to kill 
them, prevent their growth, and spread.35 For example, in 
cancer treatment unlike traditional chemotherapy, which 
can have widespread effects on the body and often causes 
side effects, targeted therapy drugs are designed to work 
more selectively and precisely, targeting specific molecules 
or pathways involved in cancer growth and progression.36 
CD44 is an up-regulated receptor in rheumatoid arthritis 
that can be targeted for drug delivery strategies in 
rheumatoid arthritis therapy.37 It is a transmembrane 
glycoprotein that is targeted using hyaluronic acid in 
various drug delivery systems.38 For example, hyaluronic 
acid-decorated niosomal NPs have been used for targeted 
delivery of epirubicin to treat breast cancer.39 Niosomes 

are vesicular structures composed of nonionic surfactants 
and cholesterol that have been extensively studied for 
drug delivery applications.40 Niosomes are considered a 
promising carrier in advanced drug delivery, providing 
a controlled drug release system for an extended time 
period. Their biodegradability, non-toxicity, stability, and 
cost-effectiveness, make them distinguished compared to 
other NPs.41 Niosomes can be produced using different 
synthesis techniques, such as the thin film hydration 
method and the emulsification technique, allowing for 
large-scale production.42 In this study, the niosomal NPs 
were fabricated with the thin film hydration method. 
Figure 1 illustrates the DLS analysis of fabricated niosomal 
NPs. The mean diameter of blank Nio NPs, Nio-chr NPs, 
and H-Nio-chr NPs are estimated as 138 ± 14.1, 172 ± 8.4, 
and 199 ± 10.7 respectively. The H-Nio-chr NPs have the 
largest size compared to other NPs. This can be interpreted 
due to the loading of chrysin inside it and hyaluronic acid 
decoration on the surface of these NPs. 

Zeta potential is another essential surface parameter in 
the characterization of NPs. It is estimated the stability 
of nanomaterials and surface charge, as changes in these 
characteristics directly influence the biological activity of 
the NPs.43 Table 3 lists the zeta potential and the PDI value 
of niosomal NPs. Zeta potential value above + 30 to -30 
mV prevents the aggregation of particles, which is crucial 
for maintaining the stability of the NPs.44 PDI provides 
information about the size distribution and uniformity of 
NPs. A low PDI value indicates a narrow size distribution, 
which is essential for ensuring the uniformity of 
nanoparticle performance, such as solubility, drug release, 
dissolution, and cellular uptake.45,46 

Morphology is an effective factor in properties and 
potential applications of NPs. Studies have revealed that 
the shape of NPs can impact their circulation, distribution, 
extravasation, cellular uptake, and therapeutic 
performance.47 Previous studies collectively indicate that 

Table 2. Primer sequences utilized for quantitative PCR

Genes Forward Reverse

MMP9 CCACTACTGTGCCTTTGAGTCC AGAGAATCGCCAGTACTTCCC

TIMP1 CCTTCTGCAATTCCGACCTC CATCTTGATCTCATAACGCTGGT

RANKL GGATGGCTTTTATTACCTGT AAAATTAACATTCAAAGGCAA

GAPDH ATCCTGGGCTACACTGAGCAC CCTGTTGCTGTAGCCAAATTCGT

Figure 1. The DLS results of niosomal NPs A) blank Nio NPs, B) Nio-chr NPs, C) H-Nio-chr NPs. The size, zeta potential and PDI of fabricated NPs are in 
acceptable range
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niosomes typically exhibit a spherical morphology.48,49 
The SEM images of fabricated niosomal NPs show the 
same results (Figure 2).

The results of AFM also showed the presence of particles 
with a maximum size of 129 nm, and the dispersion of 
NPs in a uniform manner and no aggregation of NPs are 
also evident in this image (Figure 3).

The confirmation of niosomal NP formation was 
achieved through FT-IR techniques. Chrysin manifested 
characteristic bands at 2625 cm−1 and 2343 cm−1, indicative 
of O–H stretching vibration and intramolecular hydrogen 
bonding.50 The FT-IR spectrum (Figure 4) of chrysin 
further revealed absorptions at 3012.79 cm−1 (OH), 2929.87 

cm−1, 2713.84 cm−1, and 2630.91 cm−1 (C‒H stretching), 
and 1653.00 cm−1 (α, β-unsaturated carbonyl, C═O).51 
These FT-IR results delineate peaks associated with 
functional groups inherent to the niosomal compounds, 
including the 1096 cm−1 peak linked to the stretching C–O 
alcohol bond in the structures of cholesterol and Span 60.52 
The presence of a band at 1048.92 cm−1 is attributed to the 
C–O–C stretching vibration of hyaluronic acid.53 Upon 
the integration of hyaluronic acid into the drug-loaded 
niosome, a discernible peak at 1655 cm−1 corresponding 
to the amide group emerged, affirming the successful 
incorporation of HA into the final structure. The empty 
niosome displayed stretching peaks for C-O, C = O, and 
C-H at 1125 cm−1, 1747 cm−1, and 2900 cm−1, respectively. 
Furthermore, it manifested a carbonyl bond at 1625 
cm−1 and a -NH stretching vibration at 3100–3400 cm−1, 
indicating of the successful formation of niosomes.54

The mechanism of drug release from NPs is influenced 
by various factors such as particle size, surface properties, 
and the porous structure of the NPs.55-57 A sustained drug 

Table 3. The size, zeta potential and PDI values for fabricated NPs

Nanoparticles Size (nm) Zeta potential (mV) PDI

Blank Nio 138 ± 14.1 −12.74 ± 5.3 0.372

Nio-chr 172 ± 8.4 −18.76 ± 4.1 0.729

H-Nio-chr 199 ± 10.7 −15.38 ± 2.8 0.653

Figure 2. SEM images of niosomal NPs revealed their spherical morphology. A) blank Nio NPs, B) Nio-chr NPs, C) H-Nio-chr NPs
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release from NPs is considered desirable for medical 
applications.58 Niosomes are composed of biodegradable 
and non-immunogenic components that can carry both 
amphiphilic and lipophilic drugs, making them appealing 
for drug delivery.59,60 Niosomes have been reported to 
exhibit sustained release patterns for various drugs, such 
as α-tocopherol and dexamethasone, with cumulative 
release percentages ranging from less than 70% to an 
apparently biphasic release process.61,62 Figure 5 shows 
the 120 hours chrysin release pattern from Nio-chr NPs 
and H-Nio-chr NPs at 37 °C. After 120 hours, 64% and 
76% of loaded chrysin were released from H-Nio-chr and 
Nio-chr NPs at pH 7.4, respectively. The observed release 
profile showed two distinct phases, with peak release rates 
of 37 and 43% in the initial 12 hours of the experiment, 
followed by a subsequent decline. This rapid initial release 

can be attributed to the surface attachment of the drugs 
to the niosomal NPs through weak bonds rather than 
encapsulation.

The MTT reduction assay is a widely used method to 
measure cytotoxicity and cell viability. It is based on the 
conversion of MTT into formazan crystals by living cells, 
which is then quantified by measuring the absorbance 
at specific wavelengths.63 Figure 6 shows the inhibitory 
effect of pure chrysin, Nio-chr NPs, and H-Nio-chr NPs 
on PBMCs with various doses. Chrysin has been displayed 
to have a cytotoxic effect on cancer cells without affecting 
normal cells.64 The H-Nio-chr NPs composed of Span 
60, cholesterol, chrysin, and hyaluronic acid. Hyaluronic 
acid and cholesterol are both natural components find in 
human body and studies confirmed their safety to normal 
cells.65 As illustrated in Figure 6, the free chrysin, Nio-chr 
NPs, and H-Nio-chr NPs have negligible and insignificant 
proliferation effects on PBMCs at 2.5, 5, 15, and 20 μM 
concentrations. The only significant result (*P < 0.1) is 
demonstrated in H-Nio-chr NPs treated group at 10 
μM concentration, based on these results 10 μM of free 

Figure 3. AFM image of Nio-chr NPs agrees with results of DLS and SEM images of H-Nio-chr NPs

Figure 4. FTIR analysis of (A) blank Nio NPs, (B) hyaluronic acid, and (C) 
chrysin show their characteristic bands in FTIR of (D) Nio-chr NPs, and 
(E) H-Nio-chr NPs which confirms the successful incorporation of these 
substances into the final structure

Figure 5. The 120 h invitro release experiment of chrysin from Nio-chr NPs, 
and H-Nio-chr NPs at 37°C and pH 7.4 show a biphasic release pattern
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chrysin, Nio-chr NPs, and H-Nio-chr NPs have been used 
for other experiments of this study.

Nitric oxide plays a significant role in the pathogenesis 
of rheumatoid arthritis.66 Excessive production of nitric 
oxide can lead to inflammation and contribute to the 
development of chronic inflammatory diseases, including 
rheumatoid arthritis.67 The nitric oxide/nitric oxide 
synthase signaling pathway is involved in the generation 
and release of inflammatory cytokines, oxidative stress, 
and joint damage in rheumatoid arthritis.67 Targeting 
nitric oxide synthase and its upstream and downstream 
signaling pathways may be an effective approach for 
managing rheumatoid arthritis.68 Furthermore, nitric 
oxide levels were found to be elevated in the serum of 
patients with rheumatoid arthritis compared to control 
group.67 Figure 7 shows the nitric oxide level of control 
(untreated) and pure chrysin, Nio-chr NPs, and H-Nio-
chr NPs treated PBMCs. After 48 hours of treatment 
the nitric oxide level in pure chrysin, Nio-chr NPs, and 
H-Nio-chr NPs treated group was 24μM, 23μM, and 
18μM, respectively. The better result of Nio-chr NPs group 
compared to pure chrysin can explain with niosome NPs 
ability to enhance bioavailability of chrysin, and the better 
result of H-Nio-chr NPs can explain with the targeted 
delivery of niosome NPs with hyaluronic acid.

TNF-α is a cytokine with proinflammatory properties 
that is involved in a wide range of physiological and 
pathophysiological functions. TNF-α has been implicated 
in autoimmune diseases, where clinically approved 
TNF-α inhibitors have shown potency in managing 
these conditions.69 In rheumatoid arthritis, TNF-α acts 
as a primary pathogenic driver, precipitating a pro-
inflammatory cytokine cascade and tissue damage, and 
anti-TNF therapies have shown significant improvements 
in symptom scores.70 The IL-1 family of cytokines, 
including IL-1α, IL-1β, and IL-18, are associated with 
inflammation in rheumatic diseases, with IL-1β playing 
a pivotal role in promoting inflammation.71 IL-1β is an 
inflammatory cytokine that plays a major role in innate and 
adaptive immunity, particularly in driving inflammation 
and immune responses.72 IL-10 is a cytokine that plays 
a role in various diseases, including multiple sclerosis, 
cancer, and inflammatory diseases.73 The changes in IL-
1β, TNF-α, and IL-10 levels in untreated and pure chrysin, 

Nio-chr NPs, and H-Nio-chr NPs treated PBMCs are 
shown in Figure 8, The highest reduction in TNF-α and 
IL-1β, levels compared to control group was achieved with 
H-Nio-chr NPs treatment. As previously described, this 
can be the result of hyaluronic acid coated on surface of 
niosome NPs which keeps them beside PBMCs and make 
cellular entrance easier for niosome NPs and chrysin. 
Unexpectedly there was an increase in the level of IL-10 
in rheumatoid arthritis patients which were treated with 
pure chrysin, Nio-chr NPs, and H-Nio-chr NPs.

TAC refers to the total antioxidant capacity, which 
is a measure of the ability of antioxidants to counteract 
oxidative stress and maintain redox balance in biological 
systems.74 One study found that participants in the top 
tertile of TAC were less likely to have rheumatoid arthritis, 
suggesting an inverse association between TAC and the 
risk of rheumatoid arthritis.75 Superoxide dismutase is an 
antioxidant enzyme that neutralizes superoxide radicals 
and protects against oxidative stress.76 It has therapeutic 
potential in rheumatoid arthritis by scavenging 
reactive oxygen species and mitigating inflammation.77 
Glutathione peroxidase is an essential antioxidant 
enzyme that plays a significant role in protecting cells 
from oxidative damage by reducing hydrogen peroxide.78 
Additionally, studies have indicated that decreased levels 
of reduced glutathione, an intracellular antioxidant, are 
associated with rheumatoid arthritis, further emphasizing 
the involvement of the glutathione defense system in the 
pathogenesis of the disease.79,80 As illustrated in Figure 9, 
the activities of TAC, GPx, and SOD were increased in 
treated PBMCs compared to untreated PBMCs.

A Real-time PCR was performed to investigate 
inflammation-related gene expression. Matrix 
metalloproteinase 2 (MMP2) plays an important role 
in rheumatoid arthritis progression, specifically in 
angiogenesis and invasion of tumor progression.81 
The serum levels of MMP2 are significantly higher in 
RA patients compared to healthy group.82 MMP9 is 
associated with bone remodeling and is dysregulated in 
inflammatory diseases, including rheumatoid arthritis.83 
The pathogenesis of chronic inflammation and arthritis 
is attributed to the production of MMP9 by macrophages 
in the tissue.84 RANKL (receptor activator of nuclear 
factor kappa B ligand) plays a critical role in osteoclast 
differentiation and bone destruction in rheumatoid 

Figure 6. The proliferation effects of pure chrysin, Nio-chr NPs, and H-Nio-
chr NPs on PBMCs

Figure 7. Nitric oxide level changes in untreated and pure chrysin, Nio-chr 
NPs, and H-Nio-chr NPs treated PBMCs
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Figure 8. Comparison of (A) TNF-α, (B) IL-1β, and (C) IL-10 levels in untreated and treated (pure chrysin, Nio-chr NPs, and H-Nio-chr NPs) PBMCs

Figure 9. Comparison of changes in activity of (A) total antioxidant capacity, (B) superoxide dismutase, and (C) glutathione peroxidase in control and treated PBMCs

arthritis.85 Studies have shown that RANKL is a key 
mediator of increased osteoclast activity in rheumatoid 
arthritis.86 Furthermore, increased RANKL activity has 
been revealed in diseases characterized by excessive bone 
loss, such as rheumatoid arthritis and osteoporosis.87 
Figure 10 illustrates the expression level of these genes in 
PBMCs before and after treatment with pure chrysin, Nio-
chr NPs, and H-Nio-chr NPs. The treatment with pure 
chrysin could downregulate the expression of MMP9 and 

RANKL while up-regulating the expression of the TIMP1 
gene. It is evident that tissue inhibitor of metalloproteinases 
1 (TIMP1) plays a crucial role in regulating the activity of 
MMP 2 and MMP9.88 As in previous tests, the best results 
were obtained with H-Nio-chr NPs. 

However, the TIMP1 expression change in pure chrysin 
treated and Nio-chr NPs group was not significant. This 
is the result of an enhancement in the bioavailability of 
chrysin on the one hand and, on the other hand, targeting 
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and presence beside PBMCs with hyaluronic acid on the 
other hand.

Conclusion
In this study, the hyaluronic acid-decorated niosomal 
NPs were synthesized for the targeted delivery of chrysin. 
Their treatment demonstrated notable effects on PBMCs 
isolated from rheumatoid arthritis patients. Specifically, 
the hyaluronic acid-decorated niosomal NPs loaded with 
chrysin exhibited a significant reduction in nitric oxide 
levels (an inflammatory agent) and suppressed the activity 
of IL-1β and TNF-α (inflammatory cytokines), as well 
as expression of the MMP9, RANKL genes (osteoclastic 
related genes). Conversely, the treatment led to an increase 
in the activity of antioxidant agents like the TAC, SOD, 
GPx, IL-10, and anti-osteoclastic related gene (TIMP 
2) expression. These findings collectively suggest the 
potential therapeutic efficacy of hyaluronic acid-decorated 
chrysin-loaded niosomal NPs in mitigating inflammation 
and modulating the immune response in rheumatoid 
arthritis patients. Further investigations, including in vivo 
studies and clinical trials, are warranted to validate and 
expand upon these encouraging results.
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