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Introduction
Nanotechnology has developed drug delivery by providing 
novel solutions that improve treatment outcomes 
while reducing adverse effects. Active pharmaceutical 
ingredients characterized by extremely low solubility 
present restricted bioavailability upon oral ingestion, 
diminished diffusion capacity via the outer membrane, 
the necessity for higher quantities during intravenous 
administration, and undesired side effects preceding 
the conventional formulation methods.1 Integrating 
nanotechnology in drug delivery mechanisms offers a 
pathway to overcome these constraints. Lyotropic liquid 
crystalline nanoparticles (LLCNP) emerge as exemplars 
of self-assembling nanomaterials, showcasing remarkable 
potential.2–5 Among the array of nanostructured carriers, 
cubosomes epitomize a burgeoning class of nanosystems 
engineered to accommodate various active pharmaceutical 
ingredients, consisting of both hydrophobic and 
hydrophilic drugs, alongside biotherapeutics such as 
peptides, proteins, and nucleic acids.6-9

The process of liquid crystalline injectable formulations 
involves integrating amphiphilic molecules within a 
solvent, resulting in the formation of LLC phases. The 
amphiphilic structure of the molecule, additives, and 
the solution’s conditions affect these phases.10 Friedrich 
Reinitzer made the first observation of LLCNP in 1999.7 
Like liposomes, they have intricate 2D and 3D nonlamellar 

nanostructures, including inverse hexagonal and cubic 
mesophases. The distinctions between liposomes and 
cubosomes are illustrated in Figure 1. 

Cubosomes are square and rounded shapes and possess 
an internal cubic lattice. They are thermodynamically stable 
structures characterized by honeycombed SL formulations 
that create two internal aqueous channels and a substantial 
interfacial area.11,12 Inside the bicontinuous cubic stage 
framework, there are three stages [Im3m (Schwarz) 
surface), Pn3m (Diamond surface), Ia3d (gyro surface)] 
to explain the distinct shapes, all of which additionally 
display boosted drug transportation in the target site.13-16 
According to Ayesha Waheed, the organized mesophase 
structure and nanoscale size range of liquid crystalline 
NPs make them useful drug carriers for molecules with 
different polarity, such as nucleic acids and proteins. A 
thorough analysis highlights how their 3D structure and 
tunable coronas support a variety of applications, from 
theranostics to medication delivery.7 Zhai et al reflected 
that liquid crystalline drug delivery systems are promising 
for the future generation of nanomedicine, with their 
self-assembling amphiphilic lipids acting as efficient 
nanocarriers for a variety of medications, peptides, 
proteins, nucleic acids, and imaging agents.17

The unique cubic structure not only presents a platform 
for superior drug encapsulation and protection but 
also offers tailored solutions for targeted therapeutic 
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interventions.18-20 Cubosomes possess high surface area 
and responsiveness to stimuli. Using this, researchers can 
design and tailor sophisticated delivery systems capable of 
precise control over drug release and distribution within 
the body.21,22 Moreover, the diversity of types of cubosome 
each with its own set of advantages and challenges, 
underscores the necessity of a comprehensive exploitation. 
We intend to inspire further research and innovation 
in the nanotechnology field, driving advancements in 
therapeutic interventions, and improving patient care. 

pH-Responsive cubosomes
There are pH differences between normal blood and 
pathological tissues (e.g., those affected by infection, 
inflammation, and cancer, which often become more 
acidic), among specific intracellular compartments 
such as the cytosol, endosomes, and lysosomes, and 
along the gastrointestinal tract. These differences are 
typically targeted by pH-responsive nanosystems. For 
this scope, “smart” molecules including polymers, lipids, 
and peptides are used since they are biocompatible and 
sensitive to specific pH levels because of their functional 
ionizable groups.23,24

The pH-responsive mesophase, designed with a lipid-
based LLC system composed of mono-linolein and 
pyridinyl methyl linoleate, transitions its symmetry from a 
reverse hexagonal phase (H2) at pH 7.4 to a bi-continuous 
cubic phase (pn3m) at pH 5.5. This transformation was 
studied and found to occur due to the protonation of the 
pyridinyl methyl linoleate’s weakly basic head group near 
its pKa of 5.5.25 This pH-triggered behavior leverages 
the acidic conditions in tumor tissues to enhance the 
release of drugs like Doxorubicin, potentially improving 
chemotherapy efficacy. By switching its structure under 
acidic conditions, this mesophase enables targeted drug 
delivery, improving the efficiency of cancer treatments.26,27

According to Rajesh et al, pH-responsive cubosomes 

lessen side effects while allowing a chemotherapeutic 
chemical to be delivered to tumors selectively.28 According 
to Mertins et al, pH-sensitive polymer shells present 
novel prospects for topical and oral medication delivery 
that could lead to the development of innovative cancer 
treatments. Drug compounds that have electrochemical 
activity might also be advantageous for pH-responsive 
drug release.4 At physiological pH, these NPs had a slow-
releasing hexagonal structure, whereas, at the acidic pH of 
the tumor, they displayed a quick-releasing bi-continuous 
cubic phase.29

According to Manchun et al, pH-sensitive nanosystems 
have been synthesized to deliver medications to the 
endosomes or lysosomes within cancer cells, or the 
mildly acidic extracellular fluids of tumor tissue following 
endocytosis. After the medication accumulates in tumor 
tissue via enhanced permeability and retention effect, these 
systems can release it through specialized mechanisms. 
Alternatively, they can release the drug within endosomes 
and lysosomes via pH-controlled hydrolysis after cellular 
uptake through the endocytic pathway.29 According to 
Negrini and Mezzenga, linoleic acid, a weak acid with a 
pKa of approximately 5, provides pH responsiveness. At 
pH 7, it is essentially in the deprotonated charged state, 
while at pH 2, it is primarily protonated and neutral. This 
results in changes to the critical packing parameter of 
the LLC.30 In the study by Prajapati et al pH-responsive 
cubosomes were synthesized by blending 2-Hydoxyoleic 
acid with glycerol monooleate at varying mass ratios 
to examine pH-induced structural transformation for 
targeted drug delivery to cancer tissues. The research 
aimed to investigate the composition and pH dependence 
of drug-loaded NPs, providing insights into their pH-
triggered transformation (Figure 2).31

Temperature responsive cubosomes
Numerous investigations have corroborated the hypothesis 

Figure 1. The distinction between liposomes and cubosomes is illustrated here. Created in BioRender. https://BioRender.com/kh1in0u
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that drug release from thermos-responsive polymers can 
be triggered by slight temperature variations. However, in 
recent years, thermos-responsive drug delivery systems 
have primarily been utilized in the delivery of anti-cancer 
drugs and imaging agents.32 Poloxamers stand out as 
widely explores thermo-responsive systems, renowned 
for their versatility. Thermo-responsive systems offer 
numerous advantages, such as the formulation of an in-
situ gelling-controlled release system.33

Mohsen et al elucidated the significance of a thermos-
sensitive system in enhancing the intranasal delivery 
of Lamotrigine. By integrating optimized cubosomes 
into a thermosensitive in situ gel, the system enhances 
the physical stability, nasal residence time, and patient 
compliance. The thermos-sensitive gel undergoes a sol-gel 
transition in response to temperature changes, facilitating 
the administration as a liquid that transforms into a gel 
upon contact with the nasal mucosa. The transition 
augments drug absorption across the nasal mucosa 
membrane, thereby improving the efficacy of lamotrigine 
in epilepsy treatment. The thermosensitive property is 
attributed to the in-situ gel into which the optimized 
cubosomes are incorporated. The synergistic combination 
of cubosomes and the thermosensitive gel enhances drug 

absorption and efficacy by prolonging nasal residence 
time and facilitating drug release at the target site.34

According to Dabkowska et al, the tiny poly(N-
isopropylacrylamide) nanogels act as precise thermos-
responsive controllers in regulating the hydration of liquid 
crystalline surface layers.

Their rapid transition from a swollen to a collapsed 
state, induced by temperature changes, allows controlled 
release of water from the surface while preserving the 
integrity of the lipid matrix. This capability enables the 
secure encapsulation of delicate bioactive molecules 
within the lipid matrix, presenting a promising avenue for 
controlled-release applications.35

Light responsive cubosome
Light-responsive nanocarriers offer a non-invasive, 
highly adaptable, and precisely controlled method for 
drug delivery.36 The advancement of stimuli-responsive 
materials is crucial, marking the initial utilization of 
photo-switchable amphiphiles for the creation of light-
sensitive cubic LLC dispersions, known as cubosomes. 
This innovation enables external manipulation of the LLC 
structure, facilitating the on-demand release of entrapped 
guest molecules. To produce these cubosomes, azobenzene 
photo surfactants, which have an azobenzene-alkyl tail and 
a neutral tetra ethylene glycol head group, are used with 
monoolein-water systems.37 The lipid/water system can 
be made photo-responsive by including plasmonic NPs or 
photochromic compounds. When these components are 
activated, the lipid bilayer’s permeability changes either 
temporarily or completely, enabling or prohibiting the 
movement of molecules that are encapsulated (Figure 3). 
By using photothermal and photochromic techniques, 
this has been accomplished.38 

Chen et al highlighted that phototherapy, which 
includes photothermal therapy and photodynamic 
therapy, has attracted considerable interest among 
researchers because of its non-invasive nature, precise 
spatial and temporal selectivity, and low toxicity.39 As per 
Fong et al, plasmonic hydrophobized gold nanorods are 
integrated into mesophases produced by diverse lipid/
water combinations to fabricate light-responsive bulk 
self-assembly lipid systems. The gold nanorods nestled 
within the liquid crystalline matrix were stimulated by 
Near Infrared laser light, inducing localized plasmonic 
heating of the mesophase. This facilitated the reversible 
manipulation of nanostructure, contingent upon the 
concentration of nanorods and the composition and heat 
capacity of the liquid crystalline matrix.38

 According to Angelova et al in host-guest LLC 
mesophases of lipids intended as molecular switches for 
the “on-demand” release of chemicals, Small-Angle X-Ray 
Scattering (SAXS) has shown light-triggered effects. A 
tiny quantity of a lipid with an azobenzene photoactive 
unit that was synthesized successfully has been added to 
host liquid crystalline mesophases made up of oleic acid 

Figure 2. Small-angle X-ray scattering (SAXS) patterns were collected 
for polymer-stabilized, pH-sensitive NPs containing the anticancer drug 
2-hydroxyoleic acid. The red curves represent SAXS patterns as the 
pH decreases from neutral to very acidic, while the black curves show 
patterns as the pH increases back to 5. Pn3m (red arrows) and Im3m (black 
arrows) indicate cubic arrangements and H2 (blue arrows) is a hexagonal 
arrangement, illustrating structural changes in the NPs with varying pH 
levels. The figure is reprinted with permission from Prajapati et al.34 Copyright 
2019, American Chemical Society
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and monoolein.40 According to Jia et al, a promising class 
of photo-switchable molecules that hasn’t gotten much 
attention in the literature is hexaaryl biimidazoles. The 
one that exhibits remarkable negative photochromism 
and is sensitive to green light is (2,20-dimethoxy diphenyl 
imidazole)-1,10-binaphthyl.41 The photosensitive 
cubosomes utilized in the study by Bazylińska et al 
represent a substantial advancement in targeted therapy 
for melanoma skin cancer cells. These cubosomes, 
laden with photosensitizing dyes such as Chlorin e6 or 
meso- tetraphenylporphine-Mn (lll) chloride, exhibited 
enhanced biocompatibility, heightened therapeutic 
efficacy with significant cytotoxic effects post-irradiation 
effective bioimaging capabilities, and potential for future 
applications in photodynamic therapy and bioimaging 
of skin malignant melanoma. The innovative approach 
presents a promising avenue for precise and efficient 
treatment of melanoma skin cancer, underscoring the 
potential of cubosomes are versatile drug delivery systems 
for improved therapeutic outcomes.42

Enzyme-responsive cubosomes
One of the most promising types of smart stimulus-
responsive NPs is enzyme-responsive NPs. Enzymes 
are needed for the body’s lipid processing to transform 
lipids into cellular fuel.38 The hepatoprotective properties 
and oral bioavailability of Coenzyme Q10 can be 
significantly enhanced by utilizing glycerol monooleate 
(GMO) cubosomes stabilized with P407. To overcome 
the challenges associated with piperine distribution, 
such as hydrophobicity and 1st pass metabolism, tween 
80-modified GMO cubosomes have been developed. 
In vivo studies indicate that these cubosomes markedly 
amplify cognitive function, suggesting their potential 
as a noninvasive, brain-targeted delivery system for 
Alzheimer’s disease treatment. Similarly, the incorporation 
of curcumin into phytantriol cubosomes has demonstrated 
a substantial increase in oral bioavailability, achieving at 
least a 14-fold improvement compared to free curcumin.43

According to Tan et al cubosomes containing the 
antimicrobial peptide were found to have a notably greater 
bactericidal impact following enzyme exposure than pure 
peptide which lost its bactericidal action upon proteolysis.43 

The significance of enzyme-sensitive cubosomes lies 
in their potential application as drug-delivery systems 
that can respond to specific enzymatic triggers. In the 
presence of enzymes present in the target tissue, the 
cubosomes can be synthesized for releasing payloads in 
a controlled fashion. This targeted and triggered release 
mechanism enhances the efficiency and specificity of drug 
delivery, especially in customized treatments of various 
diseases, hence offering precise dosage and minimal off-
target effects. Fusion of enzyme-sensitive molecules and 
cubosomes can develop smart nanocarriers that react to 
specific biological cues such as enzyme activity levels in 
diseased tissues.44,14 

Based on the study conducted by Li et al, using enzymes 
as triggers, chemical selectivity and substrate specificity 
can be achieved. Enzyme-catalyzed reactions can be 
performed under moderate conditions, low-temperature 
aqueous environments, and neutral or near-neutral 
pH levels. Phospholipase exhibited high selectivity 
hydrolyzing fatty ester bonds at the sn-2 position of 
glycerophospholipids. Such cubosomes also increased 
the efficacy of urokinase-type plasminogen activator, a 
thrombolytic drug. Its encapsulation within the enzyme-
responsive cubosomes aid in targeted drug release realized 
due to specific enzymatic triggers within the thrombus 
microenvironment. This ensures the thrombolytic agents 
retain protection while in circulation and are precisely 
released at the thrombosis site.45

Multi stimuli responsive cubosomes
Dual and multi-responsive, including stimuli-responsive 
NPs, are the innovative drug delivery strategies developed 
for combinational chemo-phototherapy. Integrating 
multiple stimuli - such as pH and redox, pH and 
temperature, temperature and magnetic field, enzyme 
activity, and others- resulted in multi-responsive drug 
delivery systems. For example co-loading photosensitizer 
and chemotherapeutic agents onto graphene oxide NPs has 
shown a marked improvement in cancer treatment efficacy 
compared to monotherapy.46 For targeted photodynamic 
treatment, a pH-responsive nanophotomedicine (pH-
NanoPM) was developed. This nano photomedicine was 
constructed through the self-assembly of a pH-responsive 

Figure 3. Preparation of light-responsive cubosomes including the encapsulation of upconverting inorganic NPs/gold/chiral/metal NPs. Plasmonic nanoparticles 
were co-encapsulated with an active agent within cubosomes to enhance the therapeutic capabilities of nanoplatforms. Created in BioRender.    https://BioRender.
com/yui5fdo

https://BioRender.com/yui5fdo
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polymeric photosensitizer (pH-PPS), incorporating 
approximately 10nm-sized pH-cleavable mPEG (pH-pH-
mPEG). When HeLa human cervical cancer cells were 
exposed to pH-NanoPM, enhanced cellular internalization 
was observed at the acidic tumor pH compared to the 
normal pH, leading to a significant increase in cancer 
cell cytotoxicity. The fusion of metal NPs and stimuli-
responsive polymers onto one platform has garnered a lot 
of attention in recent years. Zhou et al stated that a drug in 
combination with a polymer containing selenium may be 
employed successfully for multi-stimuli responsive drug 
release. They created metal-organic frameworks with 
pH-triggered properties for drug delivery systems and 
selenium-containing PEG micelles with redox-triggered 
features. It is observed that the shell can only break down 
in low pH conditions, the cores collapsed readily in the 
presence of redox agents.47

As reported by Sauraj et al in their study on pH-sensitive 
prodrug NPs for targeted chemo-photodynamic therapy, 
the integrated platform was formed by encapsulating the 
photosensitizer after connecting the chemotherapeutic 
agent DOX to the polymer PEG via a pH-sensitive (Schiff 
base) bond. Under acidic pH conditions, the NPs exhibited 
pH-responsive release behavior, leading to the simultaneous 
release of the medication and photosensitizer. An in vivo 
investigation revealed that NPs had higher antitumor 
efficacy against the cells when compared to free drugs and 
photosensitizers.46 Details on types of cubosomes and their 
potential applications are given in Table 1. 

Top-down and bottom-up approaches for cubosomes 
preparation
In the bottom-up approach, cubosomes are fashioned 
through the dispersion of droplets from the inverse 
micellar phase into an aqueous medium heated to 80 °C. 
subsequently, a gradual cooling process ensues, prompting 

crystallization and the emergence of cubosomes. 
The hydrotrope incorporated within the cubosomes 
formulation assumes a pivotal role in thwarting the 
development of a bulk cubic gel phase. Its action involves 
a dissolution of the cubic gel, while the subsequent 
introduction of water, in conjunction with sonication, 
diminishes the solubility of the liquid crystalline particles, 
thus fostering the genesis of cubic entities.53

According to Gaballa et al, poloxamer 407 and soulan 
C24 were used as stabilizers throughout the top-down 
process of creating GMO cubosomes.54 As per Garg et al, 
the surfactant employed in the production of cubosomes 
includes poloxamer 407, with the concentration ranging 
from 0%-20% w/w about the dispersion phase. Typically, a 
concentration of 2.5%-10% w/w of the total weight of the 
dispersion is necessary for the monoglyceride/surfactant 
mixture. In addition to poloxamer, polyvinyl alcohol 
(PVA) is utilized as a dispersion stabilizer.55 According to 
Bryant et al phytantriol solutions in a variety of diluents, 
such as glycerol, ethanol, honey, lactic acid, and choline 
chloride-glycerol, were used to create cubosomes. 
Applying these solutions dropwise to water containing 
poloxamer 407 stabilizers was done following a well-
established cubosome synthesis protocol.56 According to 
Gaballa et al to avoid cubosome dispersion aggregation, 
F127 or another appropriate stabilizer must be used. The 
selection of the ideal preparation technique still focuses 
primarily on stability, biocompatibility, and optimal 
drug release.57,58

Challenges and considerations
Addressing the potential challenges inherent in cubosomes 
production and stability is paramount to fully harnessing 
their potential in pharmaceutical applications. A significant 
obstacle is the elevated viscosity of the cubic phase, which 
complicates large-scale production processes. Moreover, 

Table 1. Types of responsive cubosomes and their potential applications

Types of responsive cubosomes Composition Drug used Applications References

pH-responsive
Monoolein
Pluronic F127 Ionizable amino lipids

Doxorubicin Anticancer Therapy Rajesh et al48

Light-responsive cubosomes
Photoswitchable amphiphiles such as 
azobenzene photo surfactants and monoolein

Nile Red
Controlled drug 

delivery.
Jones et al49

pH-responsive cubosomes
Monoolein and the amino lipids N-(Pyridin-4-
ylmethyl) oleamide and N-(2(piperidine-1yl)
ethyl) oleamide

7-ethyl-10-hydroxy camptothecin, 
which is an active metabolite of the 
anticancer prodrug irinotecan

Anticancer Therapy Rajesh et al29

pH-responsive cubosomes
Monoolein
N-arginine-modified chitosan and alginate

Anthelmintic drugs including 
ivermectin, mebendazole, and 
praziquantel 1.

oral drug delivery 
systems

Mathews et 
al28

Cubosomes in thermos 
responsive gelling system

Glyceryl monooleate, Pluronic® F127, Docetaxel Controlled-release Rarokar et al50

Thermosensitive cubosomes Poloxamer 407 Glyceryl monooleate Lamotrigine intranasal delivery Mohsen et al 34

Thermosensitive cubosomes
poly(N,N-dimethyl acrylamide)-block-poly(N-
isopropyl acrylamide)
glycerol-monooleate

-
targeted drug 

delivery
Balestri et al 51

pH-responsive cubosomes
Monoolein.
Brucea javanica oil

Doxorubicin
combined delivery 

for cancer treatment
Li et al52
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cubosomes tend to exhibit low entrapment efficiency for 
water-soluble drug molecules due to the significant water 
content within their structure. This constraint not only 
has an impact on overall medication loading capacity, but 
it also impairs the delivery system’s effectiveness. Nano-
sized nature of cubosomes can undergo particle growth 
upon prolonged standing and is problematic for parenteral 
formulations. This causes stability and uniformity issues, 
demands innovative approaches to mitigate particle 
proliferation, and assures long-term stability.24,59–61

There is continuous research on cubosomes in drug 
delivery aimed at surmounting production limitations 
and augmenting stability. Researchers hope to unlock the 
complete potential of cubosomes by tackling difficulties 
associated with cubosomes such as viscosity maintenance 
during the synthesis and refinement of drug-loading 
methods for hydrophilic compounds. The NP engineering 
and tailored formulations promise to mitigate stability 
concerns connected to particle growth, thereby enhancing 
the suitability of cubosomes for various administration 
routes including parenteral delivery. The challenges 
can be resolved with interdisciplinary research efforts, 
shaping the future landscape for customized drug 
delivery options.22,62-64

Diverse utilization
Cubosomes have emerged as a promising drug delivery 
system, presenting advantages over traditional liposomes 
because of their unique inner cubic structure. This unique 
configuration provides a significantly larger interfacial 
surface area, facilitating the encapsulation and protection 
of higher quantities of hydrophilic and hydrophobic 
drugs compared to liposomes.65–66,14 Notably, cubosome 
preparation primarily employs shear and homogenization 
techniques, eliminating the need for organic solvents. 
Furthermore, cubosomes exhibit superior solubilization 
capacities in contrast to conventional lipid or non-lipid 
carriers, making them excellent vehicles for protecting 
delicate drugs, such as peptides and proteins, from 
enzymatic degradation and in vivo degradation.67 
Nanocarriers, including cubosomes, exhibit minimal 
toxicity and biocompatible characteristics, making them 
effective delivery methods for a wide range of substances 
in various applications.68-70,26

Cubosomes have shown promise as nanocarriers 
for anticancer medications. The unique structure of 
cubosomes suggests their potential application in 
melanoma treatment, with both passive and active 
targeting strategies demonstrating validity in preclinical 
and clinical research. In the realm of oral drug delivery, 
liquid crystalline NP technology emerges as a sophisticated 
solution, adept at orchestrating precise in vivo drug 
distribution. By strategically releasing particles at distinct 
absorption sites, such as the upper or lower intestine, it 
effectively navigates the challenges of regional absorption, 
a critical consideration for medications characterized by 

narrow absorption windows.71-75

In targeted drug delivery, cubosomes have exhibited 
enhanced permeability and retention when administered 
to rabbit corneal tissue sections, showcasing their 
potential for ocular applications. Additionally, cubosomes 
have been found to increase ocular bioavailability 
by prolonging the half-life at the corneal surface and 
exhibiting mucoadhesive properties, enhancing corneal 
permeability. For topical drug delivery, the bio-adhesive 
characteristics of cubic phases make them suitable for 
mucosal depositions and topical drug delivery systems. 
These systems leverage liquid crystal and liquid crystal NP 
technology to create bio-adhesive liquid crystalline systems 
in situ, facilitating precise and efficient drug distribution 
to mucosal surfaces. In contrast to conventional 
administration approaches, topical drug delivery systems 
offer temporary protection to sensitive and irritated skin 
by creating a thin layer on mucosal surfaces. These systems 
further fine-tune the nanostructure to attain the desired 
delivery profiles, representing a sophisticated approach to 
dermatological care.48,76

Conclusion
Cubosomes demonstrate strong potential as smart 
drug delivery systems, owing to their ability to respond 
to physiological stimuli such as temperature, pH, and 
enzymatic activity. This review presents that cubosomes 
support the initial hypothesis of their functional 
adaptability since they show great potential as carriers for 
site-specific and controlled drug delivery. Their distinctive 
structural characteristics and biocompatibility imply useful 
benefits in improving drug stability and release profiles. 
By minimizing off-target effects and enhancing delivery 
precision, cubosomes could contribute meaningfully to the 
development of safer and more effective therapies. Future 
studies may centre on optimizing formulation parameters, 
increasing manufacturing scale, and conducting in vivo 
studies to support their clinical relevance in particular 
therapeutic settings.
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