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Introduction
The light subunit of mushroom Agaricus bisporus 
tyrosinase (LSMT) was found to slightly enhance the 
proliferation of RAW 264.7 cells (macrophage).1 Recently, 
LSMT was identified to specifically bind mannose and 
mannitol, but not galactose, glucose, nor sorbitol.2 Hence, 
LSMT was renamed to Abmb (A. bisporus mannose-
binding protein). That recent finding may explain Abmb 
effect on the macrophage because mannose-binding 
protein (MBP) is a key player in the innate immune 
system.3 Most of MBP structurally has the collectin type 
lectin (CTL) fold that contains calcium, which is required 
to bind mannosyl-sugars.4 MBP with non-CTL structure 
can induce the immune cell response as demonstrated 
by concanavalin. Concanavalin has a β-prism fold, binds 
glucose, and requires metal ions for sugar-binding.5 Abmb 

structure contains no calcium and belongs to the ricin 
B-like type lectin (RTL).6,7 RTL exclusively consists of 
glucose-/galactose-binding protein and requires no metal 
cofactor to bind its sugar target.8 RTL could also influence 
the immune cells response as demonstrated by sMTL-
13 that increases IFN-γ production by the peripheral 
blood mononuclear cells (PBMCs) in the blood serum of 
active tuberculosis patients.9 Furthermore, the residues 
responsible for sugar recognition in RTL are equally 
present in Abmb.10 Hence, Abmb effect on the immune 
cells must be substantiated. 

Abmb does not evoke the generation of IgG in Swiss 
Webster and Balb/c mouse even after 12 weeks of weekly 
administration period. Histopathological evaluation 
further suggests that Abmb does not induce organ 
damage.11,12 Thus, Abmb is not immunogenic or toxic. 
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Abstract
Purpose: A lectin-like protein from the mushroom Agaricus bisporus has been shown to slightly 
increase the proliferation of RAW 264.7 cells. Following its identification as a mannose-binding 
lectin, henceforth called A. bisporus mannose-binding protein (Abmb), the protein is hypothesized 
to stimulate the innate immune cells response. The present work was aimed to substantiate that 
hypothesis. Furthermore, this study complements Abmb exploration as a potential agent for anti-
breast cancer, which its treatment is hampered with compromised immunity of patient receiving 
chemotherapy.
Methods: Abmb’s effect on the phagocytic activity of the macrophage was measured with FACS. 
Nitric oxide (NO) production was checked using Griess test while expression of the cytokines 
in the RAW 264.7 cells was analysed at gene and protein level using polymerase chain reaction 
(PCR) and FACS, respectively. Abmb’s effect on the expression of surface markers of the human 
immune cells in the peripheral blood mononuclear cells (PBMCs) was checked with specific 
antibodies for targeted cluster differentiation (CD) and analysed using FACS.
Results: Abmb increased the phagocytic activity of the macrophage and NO production. Abmb 
increased the expression of cytokines i.e. tumour necrosis factor (TNF)-α, interleukin (IL)-6, 
and IL-10. With the PBMCs, Abmb activated dendritic and natural killer (NK) cells, but not the 
B- or T-cells.
Conclusion: Abmb increased the activity of the macrophage cells and activated the immune cells 
that are related to the innate immune system, particularly the cellular immunity.
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That early study also indicates that Abmb likely has no 
effect on the adaptive immune system. One of Abmb’s 
closest structural homologs (thus an RTL), HA-33 from 
the botulinum toxin complex, has been reported to 
evoke the generation of IgG in mice.13 However, HA-33 
is a galactose-binding lectin. The other Abmb’s closest 
structural homolog is the mushroom Clitocybe nebularis 
lectin (CNL), which induces the maturation and activation 
of dendritic cells (DCs).14 CNL’s effect on macrophage has 
not been reported. Like HA-33, CNL is also a galactose-
binding protein. This situation indicates that Abmb might 
exert its activity differently to its structural homologs. 

Lectin has been strongly linked to stimulation and/
or activation of the innate immune system via the 
complementary lectin pathway, which is based on glycan/
sugar recognition upon interaction with the receptor 
on the cell surface.3 Hence, the type of glycan dictates 
the pathway to activate.15 Phagocytic activity of the 
macrophage is the most common effect induced by lectin, 
but the reaction cascade in the cells depends on which 
receptor is activated.16 In this instance, CTL and RTL 
exert their activity differently due to differences in their 
sugar targeting.4,8 As for Abmb, exploring its effect on the 
immune cells becomes challenging.

Here, the Abmb effect on the macrophage was evaluated 
in terms of phagocytic activity, production of nitric 
oxide (NO), and cytokines i.e. tumour necrosis factor 
(TNF)-α, interleukin-6 (IL-6), IL-10. Abmb effect on 
human immunity was studied through the expression of 
surface markers for T-, B-, natural killer (NK), dendritic, 
and monocyte/macrophage (M/M) cells in PBMC. The 
present study provides more hints for further works to 
elucidate the pathway upon stimulation of the immune 
cells by Abmb.

Material and Methods
Materials
The chemicals were purchased from Merck (Darmstadt, 
Germany) except when specifically mentioned. Abmb was 
prepared according to a previous report.17 Details of Abmb 
preparation is provided in Supplementary file 1. The RAW 
264.7 cells were from ATCC, and the tissue culture media 
was from Gibco (Grand Island, NY, USA). PBMC were 
isolated from human blood, obtained from donors with 
their consent. Reagents for FACS analysis were from BD 
Biosciences (San Jose, CA, USA). 

Abmb effect on the macrophage cells 
RAW 264.7 cells were grown in a 96-well plate 
(Thermo Fischer Scientific, Singapore) according to the 
previous report.1 Abmb was added to the cells at a final 
concentration of 0.18-1.41 μM. The phagocytosis assay 
was performed as described by Sharma with a minor 
modification18 at a final Abmb concentration of 0.35-1.41 
μM. Briefly, the fluorescence beads were opsonized with 
FBS for 1 hour before use. The beads were incubated with 

Abmb for 2 hours, added to the macrophage cells, and 
incubated for another 2 hours. The fluorescence signal 
of the engulfed beads was measured in a FACSCalibur 
system (BD Biosciences, San Jose, CA, USA) and were 
analysed with the Cell Quest program. The amount 
of NO in the cell media was measured using Griess 
reagent (Promega, Madison, WI, USA). The cytokine 
gene expression analysis was done from the total RNA 
sample collected at 2, 18, 24 and 48 hours of incubation. 
RNA was isolated using RiboEx (GeneAll, Seoul, Korea) 
and cDNA was generated from total RNA sample using 
ReverTra Ace (Toyobo, Osaka, Japan). Amplification 
was done using GoTaq (Promega, Madison, WI, USA) 
and performed in a T3000 Thermocycler (Biometra, 
Göttingen, German). Images were captured using Chemi-
Doc (BioRad, Singapore). The relative levels of target gene 
mRNA expression were normalized to actin as the internal 
control. Gene expression was evaluated using gene-
specific primers for TNF-α, IL-6, IL-10, and actin (marker) 
(Table S1, Supplementary file 1). The cytokine analysis 
at the mRNA level was performed using a cytometric 
bead array mouse inflammation kit (BD Biosciences, San 
Jose, CA, USA) following the manufacturer’s instruction. 
Lipopolysaccharide (LPS) (at ~0.01 μM; ~1 μg/mL, 
assuming the size is ~ 100 kDa) was employed as the 
positive control to illustrate when the immune system is 
activated.

Cell surface marker analysis
The analysis used specific antibodies for the targeted 
cluster differentiation (CD) in the whole blood 
sample. After 24 hours of treatment with Abmb (added 
concentration of 1.41 μM), PBMC cells were collected by 
centrifugation at 4 °C, suspended in PBS, and aliquot in 
10-mL sample tubes. PBS was used as the control. CD was 
cross-reacted for 30 minutes and then the cells were then 
centrifuged, washed and suspended in PBS. Conjugate of 
CD-antibody was measured with a FACSCalibur system 
(BD Biosciences, San Jose, CA, USA) and analysed with the 
Cell Quest program. The CD antibodies were purchased 
from Invitrogen (Thermo Fischer Scientific, Singapore), 
BioLegend (San Diego, CA, USA) and BD Bioscience (San 
Jose, CA, USA). 

Statistical analysis
Statistics were determined by unpaired t-test analysis 
using QuickCalcs (GraphPad Software, Boston, MA, 
USA). Values are expressed as mean ± standard deviation 
(SD) derived from at least three independent experiments 
with P < 0.05 considered as significant.

Results
Abmb effect on proliferation of macrophage
Previously, the effect of Abmb on macrophage was 
reported to become obvious at concentrations higher than 
1.41 μM.1 In the present study, the effect was checked at 
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lower Abmb concentrations to recognise the macrophage 
cells sensitivity towards the protein. The result shows 
that Abmb started to induce macrophage proliferation 
at 0.35 μM (Figure 1A). This concentration is lower than 
reported previously.1 Further, Abmb ability to increase the 
proliferation of macrophage was diminished when the 
protein was incubated with mannose prior to addition 
to the cells to block its sugar binding site (Figure 1B). 
Mannose itself has negligible effect on the proliferation, 
which is in agreement with the report of others.19 Similar 
result was observed upon testing with the MCF-7 cells, 
where Abmb also loss its ability to supress the proliferation 
of the breast cancer cells when the protein was pre-
incubated with mannose.2 The loss of Abmb effect upon 
blocking with mannose provides a hint for the protein’s 
mechanism of action. 

Finally, Abmb slightly increased phagocytic activity 
of macrophage (Figure 1C) and increasing Abmb 
amount did not enhance phagocytic activity. Thus, 
Abmb appears to increase macrophage’s proliferation 
and phagocytic activity, but the effect is restrained. This 
result is also similar to Abmb effect to the breast cancer 
cells, where the protein only causes growth arrest at low 
concentrations as demonstrated with the MCF-71,2 and 
MDA-MB-231 cells.17 MBP is widely known to bind 
specifically breast cancer cells, which are abundantly 
decorated by mannose-type glycans.20,21 Mannose and 

lectin interaction is also well known in regulation of 
immunity.15 This study provides further support for the 
relationship between immunity and cancer, in which 
cellular immunity response is able to counter internal 
infection and deal with cancerous cells.22

Abmb’s effect on production of NO and the cytokines
Abmb increased NO production in the macrophage cells, 
and the increase was related to Abmb concentration 
(Figure 2A). The effect of Abmb addition at 0.18 and 0.35 
μM to NO production was not significant and the value 
was lower than that of LPS, which was employed as the 
control. This result indicates that the effect of Abmb was 
clean from LPS because the effect should increase as the 
concentration increased (due to dilution factor of the 
sample). LPS at very low concentration has been reported 
to induce chemokines and cytokines.23 Further, this result 
also correlates with the output of the screening (see 
previous part). An increased in the NO production level 
is indicative for the stimulation of cytokine production, 
particularly by TNF-α. Thus, production of the cytokines 
upon addition of Abmb was further investigated. 

Abmb increased the protein level of TNF-α, IL-6, and 
IL-10 after 24 hours (Figure 2B). However, the increase 
was only significant for IL-6 (~50-fold) while that of 
TNF-α and IL-10 was 1.5- and 3-fold, respectively 
(Figure 2B). Thus, Abmb induces pro-inflammatory 

Figure 1. (A) Proliferation of the RAW 264.7 cells upon 24-hours treatment with Abmb at an increasing concentration. (B) The fluorescence values of cells treated 
with Abmb, mannose, and their combination relative to the control. (C) Phagocytic activity of Abmb at increasing concentrations on RAW 264.7 cells. The values 
are expressed as mean ± SD (*P < 0.05, compared to the control)
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reaction and the subsequent counterbalance. This finding 
agrees with the report that RTL increases the production 
of NO and the expression of TNF-α and IL-6 genes.24,25 
Further, although the cytokine expression at protein level 
upon induction with Abmb was similar to that of LPS, the 
expression profile at gene level was different. At the gene 
level, the expression level of TNF-α, IL-6, and IL-10 upon 
addition of Abmb increased already in the first hour. With 
TNF-α, the level rapidly increased to more than double 
up to 18th hours and then returned to basal. This return 
is normal as the cell has responded to the stimulation.26 
The return may also be related to the IL-10 expression, 
which appears to follow that of TNF-α. This counteractive 
action was reflected with their protein levels. Meanwhile, 
after its initial increase, IL-6 gene expression was relatively 
stagnant, but its protein level remained high. Thus, IL-6 
appears not to be countered by IL-10, or its degradation 
mechanism was not active. Finally, the protein level of 
monocyte chemotactic protein (MCP)-1 was also doubled 
(data not shown), which further supported that the 
cellular immune cells response is active. 

RTL induces NO production and expression of TNF-α 

and IL-6 genes occurs via the TLR-4 pathway, as shown 
by the Ricin toxin-binding subunit B.25 The pathway is 
adopted upon maturation and activation of DC by CNL.14 
MBL also interacts with TLR-4 to exert its activity.27 
Thus, Abmb could adopt this pathway. However, the 
mechanistic action of Abmb is not yet clear because it can 
either binds a surface receptor that structurally contain 
mannosyl glycan, interact directly with a surface receptor, 
or compete with a surface receptor to bind the glycan on 
its cellular molecule target.

Abmb’s effect on the population of human innate 
immune cells
Abmb effect on immune cells in PBMC was evaluated 
through detection of their specific CD markers, which 
are CD56 (NK cells), CD107 (activated NK cells), 
CD209 (monocyte-derived immature and mature DC), 
CD83 (mature DC), CD163 (M2 macrophage), and 
CD36 (Monocyte/Macrophage) after 24 hours of Abmb 
administration (Figure 3).

Abmb slightly increased the cell population of CD56 but 
not CD107, which suggests that NK cells were activated, 

Figure 2. (A) Production level of NO in the absence and presence of Abmb at increasing concentration. (B) Protein level of cytokines after 24 hours of Abmb 
addition; at gene level is in time course (the red box indicates the gene level at 24th hours correspond to the protein level). The figure legends are indicated next 
to the vertical and bottom horizontal axis. The values are expressed as mean ± SD (*P < 0.05, compared to the control)

Figure 3. (A) Cell population of surface markers for NK cell, DC, and monocyte without or upon treatment with Abmb and (B) the fluorescence profile of the cells 
in FACS analysis
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but not becoming cytotoxic. Abmb might have a regulatory 
function because NK cells action is restrained. CD107a is 
normally up regulated upon stimulation of the NK cells 
disregard the secreted cytokines.28 NK cells promote 
maturation and subsequent activation of DC through the 
secretion of TNF-α and IFN-γ that in turn releases IL-
12 to activate NK cells.29 NK cells also destroy immature 
DC and hence it has been employed to discriminate the 
mature and immature DC.30

Abmb increased the population of CD83 but not CD209. 
The result suggests that Abmb participates in maturation/
activation of DC but not in DC differentiation from 
monocytes. CD83 is the marker for mature DC, which 
is considered as the link between innate and adaptive 
immunity for its ability to stimulate naïve T-cells.31 
CD209 is the surface marker for monocyte-derived DC 
(immature and mature).32 Maturation of DC involves 
surface pattern recognition receptor, one of which is 
CD209 that specifically recognizes mannose. CD209 binds 
mannose at the positions C2-OH/C3-OH and the binding 
involves two glutamate and one asparagine residues, 
which is typical for CTL.33 The mannose-binding in Abmb 
likely includes two aspartate and one glutamine residues,10 
thus similar to CD209. Based on this, Abmb and CD209 
may compete for the binding of cellular molecule with a 
mannosyl ligand. Finally, Abmb did not change the level of 
CD163 and CD36, which are the surface markers for M2 
macrophage34 and M/M,35 respectively. The latter set of 
CDs further suggest that monocyte was not differentiated 
into macrophages in the presence of Abmb.

The above results show that Abmb could stimulate 
synergic action of NK cells and DC, which has been 
developed as a powerful strategy in anti-cancer immunity.36 
The mechanism of Abmb action on macrophage and 
breast cancer cells is still elusive. Breast cancer cells could 
modify the surrounding microenvironment and thereby 
escape the immune system.37 Compromised immunity is a 
major issue in breast cancer therapy: the patients receiving 
adjuvant therapy with doxorubicin and cyclophosphamide 
are exposed to high risk of grade-3 infection due to the 
lower mannose-binding lectin 2 expression in their body.38 
Supplementation of MBP during anticancer therapy is 
one of strategies in immunotherapy39 and Abmb could be 
developed for that purpose.

Finally, Abmb effect is apparent to DC maturation and 
NK cell activation, which may lead to the activation of 
adaptive immunity. Further, additional testing showed 
that Abmb administration did not elevate the expression 
level of CD3 and CD25 (T-cells marker) and CD20 
(B-cells marker) (data not shown). Thus, Abmb appears 
not to evoke the adaptive and only stimulate the innate 
immune system. This result concurs with Abmb non-
immunogenic profile. The latter further suggests that 
Abmb does not stimulate humoral immunity because no 
antibody was generated, and the T cells were not activated. 
Abmb probably stimulates the non-adaptive cellular 

immunity response.

Conclusion
Abmb increased proliferation and phagocytic activity of 
the macrophage but in a restrained fashion. Similarly, 
Abmb also increased the expression of NO and TNF-α 
genes but the effect was restrained. This was further 
observed with the NK cells, which was activated but not 
becoming cytotoxic. Thus, Abmb could stimulate the 
immune cells response but not excessively to induce pro-
inflammatory reaction. The present works support Abmb 
development as an immunotherapy agent. However, 
the observed phenomena could not yet determine the 
pathway adopted by Abmb to exert its activity: it could be 
as an RTL or CTL. At the moment, the study using glycan 
microarray to reveal Abmb’s target on the cell surface is 
in pursue. 
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