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Introduction
Calumenin (CALU) is a multiple EF-hand calcium 
(Ca)-binding protein and a member of the Cab45/
reticulocalbin/ERC-45/CALU (CREC) protein family. 
The mammalian CREC family members, mainly 
located in various secretory pathway compartments, are 
characterized by multiple EF-hands and participate in 
different physiological processes, and Ca homeostasis is 
the primary outcome of their functions.1,2 

Cancer is a complex and multifaceted disease 
characterized by uncontrolled cell growth, evasion of 
apoptosis, invasion of surrounding tissues, and metastasis 

to distant organs.3 It is imperative to comprehend the 
molecular mechanisms that propel cancer progression 
to design potent and efficacious treatment.4 Emerging 
evidence in recent years suggests that CALU may play a 
significant role in cancer promotion, and its association 
with more malignant phenotypes and shorter survival 
rates for patients has been widely reported.5,6

Metastasis is a primary cause of the majority of cancer 
morbidities and mortalities, and the development 
of effective treatment programs requires a better 
understanding of the molecular mechanisms behind this 
process.7 CALU has been suggested to promote metastasis 
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Abstract
Purpose: Calumenin (CALU) is a calcium-binding protein involved in several physiological 
processes, exhibiting tumor-specific expression variation and emerging as a potential player 
in cancer progression. This study aimed to investigate the correlation between CALU and 
clinicopathological features in breast cancer (BC) and perform a functional assessment of CALU 
based on a microRNA-mediated knockdown approach.
Methods: The BC tissues’ CALU expression was measured by q-RT-PCR. We looked at 
correlations between changes in CALU expression and clinicopathological characteristics. We 
adopted a CALU knockdown approach using an artificial microRNA (amiR), expressed through 
an episomal vector, in BC cell lines. Epithelial to mesenchymal transition (EMT) markers were 
then assessed, and cell cycle, migration, proliferation, and apoptosis were analyzed. 
Results: When compared to the normal surrounding tissues, the BC tissues showed a 3.4-
fold increase in CALU expression. This was significantly correlated with clinicopathological 
parameters such as histological grade, Ki-67 expression, TNM stage, lymph node involvement, 
and vascular lymph invasion. Key EMT markers, including GSC, MMP2, TIMP1, TGF1, SLUG, 
ZEB1, ZEB2, SNALI1, and TWIST1, were downregulated as a result of CALU knockdown, which 
prevented cell migration and proliferation and caused cell cycle arrest and apoptosis in the BC 
cell lines.
Conclusion: The results of the amiR-mediated knockdown approach support the findings that 
CALU is a potential promoter of BC, as evidenced by the upregulation of CALU in BC tissues 
and its correlation with clinicopathological features, which highlights its role in BC progression.
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of cancer cells by interacting with extracellular matrix 
(ECM) components, such as fibronectin and laminin.8 
CALU also has emerged as a regulator of epithelial to 
mesenchymal transition (EMT), promoting the transition 
from an epithelial to a mesenchymal phenotype. This Ca-
binding protein enhances the expression of EMT-inducing 
transcription factors, such as Snail, Twist, and ZEB1, 
while downregulating epithelial markers like E-cadherin 
and promoting cancer cell migration, invasion, and 
resistance to therapy.5,6 Furthermore, CALU may inhibit 
angiogenesis, a critical process for tumor growth and 
metastasis through fibulin-1.9,10

The human CALU gene produces 15 isoforms, among 
them CALU 1–14, with N-terminal signal peptides, are 
either localized in secretory pathway compartments 
or secreted into the extracellular space, and CALU-15 
shuttles between nucleus and cytoplasm, due to lack of 
signal peptide.8 Among the CALU isoforms, CALU-15 
is reportedly involved in cell migration by promoting 
the formation of filopodia, an actin-rich finger-like 
membrane protrusion with a key role in metastasis.8 
CALU-15, a nuclear-localized and phosphorylation-
dependent CALU isoform, promotes filopodia formation 
and cell migration by upregulating growth differentiation 
factor-15 (GDF-15), a transforming growth factor-beta 
(TGF-b)-like cytokine.8 GDF-15 has been shown to have 
both antitumor and antiproliferative properties, although 
this remains a highly controversial topic.11-14 Due to its 
pleiotropic effects, GDF-15 operates under the tight 
control of many regulatory pathways and participates in a 
variety of cellular processes.15-20 Consequently, CALU-15 
was suggested as a new regulator of GDF-15.8 

In contrast, the extracellular CALU isoforms suppress 
the signal-regulated kinase 1 and 2 (ERK1/2) signaling 
and inhibit cell migration.21 These pieces of evidence 
suggest the potential prognostic and therapeutic values 
of CALU isoforms in cancers. In our previous study, we 
introduced a panel of CALU/ARUKA/MCM2 genes with 
high accuracy in discriminating the biopsies of colon 
and lung cancers from healthy samples, where the high 
expression levels of these genes are negatively correlated 
with the patient’s survival rate.22 

The widespread involvement of microRNAs (miRNA) 
in many human diseases, including various cancers, makes 
them attractive tools for targeted therapeutic strategies.23 
In this regard, synthetic miRNAs, by silencing the gene(s) 
of interest, have shown great promise as a new class of 
targeted therapeutic agents for treating various human 
diseases, including cancer.24 The most attractive aspect of 
miRNA therapeutics is its ability to target almost any gene 
that may not be possible with small molecules or protein-
based drugs, although there are still challenges regarding 
their application at the clinical level.25

Although there is a wealth of evidence supporting the 
critical role of CALU in many cellular and cancer-related 
processes, little is known about its function in breast 

cancer (BC).26 In this study, we aimed to investigate the 
possible relationship between CALU expression patterns 
and clinicopathological and demographic characteristics 
among women with BC. Besides, using a CALU-specific 
artificial miRNA (amiR), we have adopted a miRNA-
mediated knockdown strategy in two BC cell lines to 
address the CALU function in BC and its association with 
proliferation, apoptosis, and metastasis potential. 

Materials and Methods
Human samples collection and cell culture
The National Institute of Genetic Engineering and 
Biotechnology (NIGEB) of Iran’s ethics committee 
accepted this work under ethics approval codes IR.NIGEB.
EC.1402.11.29.D and IR.NIGEB.EC.1402.11.29.E. This 
study included 55 BC women who had received BC 
surgery at Khatam-Ol-Anbia Hospital in Tehran, Iran. 
Fresh tissue specimens (tumor tissues and their normal 
adjacent tissues) were collected in separate sterile tubes, 
frozen, and stored at -70°C. An expert pathologist 
confirmed a histologic diagnosis for all samples. Informed 
written consent was obtained from patients for all tissue 
samples by the clinicians.

The SK-BR-3 and MDA-MB-231 BC cell lines were 
purchased from the Iranian Biological Resource Center 
(Tehran, Iran) and cultured in high-glucose DMEM 
supplemented with 10% heat-inactivated fetal bovine 
serum (FBS) (Gibco, USA), 100 U. mL-1 penicillin, and 
100 μg. mL-1 streptomycin (Sigma, USA) at 37 oC in a 
5% CO2-humidified incubator. After the BC cell lines 
had reached a 70%-80% confluent monolayer, they were 
passaged and used for subsequent experiments.

The cloning processes were carried out using the E. Coli 
strain DH5α (Stratagene, USA). For PCR, PCR cloning, 
and sub-clonings, MWG-Germany’s produced primers 
were employed (Table 1). Thermo Fisher Scientific, USA, 
provided the enzymes XbaI, XhoI, HindIII, StuI, PstI, T4 
DNA ligase, DNase, and reverse transcriptase (M-MuLV). 

Plasmids 
Construction of the CALU-specific amiR-6 was described 
previously.27 In summary, sequence comparison of fifteen 
CALU transcript isoforms led to the identification of a 
conserved sequence (GGAAACAATGGAAGATATA) 
that served as a template for the design of amiR-6 capable 
of targeting both nuclear and non-nuclear CALU variants.

A previously constructed CALU-specific amiR 
expressing plasmid, namely FIX-Int-miR6, expressing 
amiR-6,27 was modified by replacing the FIX cDNA with 
a 747 bp EGFP-coding DNA to end up with plasmid 
EGFP-Int-miRNA-6 (amiR-6). The forward and reverse 
primers used for PCR amplification of EGFP were 
designed to contain a mammalian Kozak sequence 
(GCCRCCATGG)28 in the start codon context and a TAA 
codon as a stop codon, which ensured higher translational 
efficiency. In the constructed plasmid (EGFP-Int-
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miRNA-6), the CALU-specific amiR-6 coding sequence 
was inserted in the EGFP 5’-UTR (Figure 1). A miRNA-
less EGFP expressing plasmid was constructed and 
used as a negative control (mock). Restriction analysis 
and nucleotide sequence analysis were used to verify 
the recombinant plasmids. A comparison of nucleotide 
sequences against the gene bank was done using BLAST.29

Real-time quantitative PCR (RT-qPCR)
Total RNA was isolated from tissues and cells using 
a High Pure RNA Isolation Kit (Roche, Germany). A 
NanoDrop spectrophotometer was used to measure RNA 
concentrations (Thermo Fisher, USA). PrimeScriptTM 
1st Strand cDNA Synthesis Kit (Takara Bio, Japan) was 
applied to perform reverse transcription on cDNA. The 
concentration and purity of the extracted cDNA were 
estimated using a NanoDrop Spectrophotometer (Thermo 
Scientific, USA). PCR was used to assess the quality of the 
generated cDNA using GAPDH-specific primers. The 
levels of expressed amiR-6 and mRNAs were compared 
to the levels of endogenous U6 and GAPDH, respectively, 
to normalize their expression. The 2-ΔΔCt method was used 
for evaluating the real-time PCR results.30 The assays were 
carried out in triplicates.

Cell transfection
The BC cell lines, plated in individual wells of 6-well 
plates, underwent transfection with amiR-6 or mock 
through Lipofectamine 2000 (Invitrogen), as per the 
manufacturer’s guidelines. After 48h, the cells were 
harvested, and the later assays were performed.

Cell proliferation assay
The amiR-6 effect on the proliferation of BC cell lines 

was evaluated through a trypan blue dye viability assay 
or an exclusion test. Before the trypan blue exclusion 
test, a 24-well plate was seeded with 8 × 104 SK-BR-3 or 
MDA-MB-231 cells. Afterward, the cells underwent a 
transfection process involving the introduction of either 
amiR-6 or mock plasmid. Following 48 hours post-
transfection, the number of living BC cells was determined 
through hemocytometer counting. 

Cell cycle distribution analysis
For the cell cycle analysis of the transfected BC cell lines 
after 48 hours, a total of 1 × 106 cells per group were 
incubated with RNase A (10 mg. mL-1) for 1 h at 37 °C and 
stained with propidium iodide (PI) (50 µg. mL-1) in dark. 
The stained cells were analyzed with a BD FACSCalibur 
flow cytometer and FlowJo software (version 7.6.1). To 
ensure reproducibility, the experiment was repeated four 
times.

Evaluation of apoptosis 
Cell apoptosis was detected by flow cytometry analysis.31 
Briefly, the BC cell lines were seeded onto 6-well plates 
and transfected with amiR-6, or mock. The transfected 
BC cell lines were rinsed with phosphate-buffered saline 
(PBS) and re-suspended in 100 µL binding buffer at 48 h 
post-transfection. A two-step staining was performed on 
the cells, once with 5 µL of Annexin V-FITC (1 µg.mL-1) 
for 10 minutes and once with 5 µL of PI (1 µg.mL-1) 
for 5 minutes at room temperature, and in the dark. In 
the last step, FlowJo software (version 7.6.1) and a BD 
FACSCalibur flow cytometer were used to evaluate the 
apoptotic cells.

Acridine orange/ethidium bromide (AO/EB) staining 
was used to detect apoptotic cells. The BC cells were 

Table 1. Primers used in this study

Gene name Accession Forward primer Seq. (5’-3’)
Forward primer 
location

Reverse primer Seq. (5’-3’)
Reverse primer 
location

PCR product 
size (bp)

ACTB NM_001101.5 GAGACCTTCAACACCCCAGCC Exon 4 AGACGCAGGATGGCATGGG Exon 4 161

CALU NM_001219.5 GATGGTTAGAGATGAGCGGAG Exon 4 ATCTTCCATTGTTTCCTGTACTACT
Exons 4-5 
boundary

142

SNAI1 NM_005985.4 ATGCACATCCGAAGCCACAC Exon 2 CACTGGTACTTCTTGACATCTG Exon 3 203

SNAI2 NM_003068.5 GCGATGCCCAGTCTAGAAAAT Exon 2 ACCTGTCTGCAAATGCTCTGTT Exon 3 225

TIMP1 NM_003254.3 TCCTGTTGTTGCTGTGGCTGA Exon 2 CCTTTATACATCTTGGTCATCTTG
Exons 3-4 
boundary

181

MMP2 NM_004530.6 TTGGCTACACACCTGATCTGG Exon 3 GAGTCCGTCCTTACCGTCAAA Exon 4 185

GSC NM_173849.3 GAAAGTGGAGGTCTGGTTTAA
Exons 2-3 
boundary

TACCTTCCTCTTCCCTCTTCT Exon 3 143

TWIST1 NM_000474.4 TACATCGACTTCCTCTACCAG Exon 1 GGAAACAATGACATCTAGGTCTC
Exons 1-2 
boundary

203

ZEB1 NM_001128128.3 CAGATGATGAAGACAAACTGCATA Exon 2 CCCTTCCTTTCCTGTGTCAT
Exons 2-3 
boundary

176

ZEB2 NM_014795.4 GGACAGATCAGCACCAAATG
Exons 6-7 
boundary

ATGTGCGAACTGTAGGAACCA Exon 8 190

TGFB1 NM_000660.7 CTATTGCTTCAGCTCCACGGA
Exons 5-6 
boundary

AGGACCTTGCTGTACTGCGT
Exons 6-7 
boundary

171

GDF-15 NM_004864.4 AGAAGTGCGGCTGGGATCC
Exons 1-2 
boundary

TCTTGCAAGGCTGAGCTGAC Exon 2 180

GAPDH NM_001289746.2 AAGGTGAAGGTCGGAGTCAAC Exon 2 GGGGTCATTGATGGCAACAATA Exon 3 102
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incubated in 6 well plates up to 80% confluency before 
transfection with amiR-6 or mock and incubation at 37 
◦C for 48 h. The cells were washed twice with PBS before 
being exposed to a 1:1 combination of acridine orange and 
ethidium bromide (Sigma-Aldrich, USA) solution (100 
µg.mL-1 each). Using an inverted fluorescent microscope, 
the cells were instantly analyzed.

Wound healing assay
To perform a wound-healing assay, the transfected cells 
were grown in four-well tissue culture plates to 80% 
confluency. Using a sterile pipette tip, a gentle scrape 
was made to create a small linear scratch in the confluent 
monolayer before being washed with PBS twice to remove 
the detached cells and incubated in a low serum medium 
(1% FBS) for 72 h at 37 °C in 5% CO2 and imaged every 
24 h, using an inverted microscope and analyzed by 
image analysis software (ImageJ, National Institute of 
Health, Bethesda, MD, USA). The wound healing degree 
was estimated by the distance passed by cells into the 
scratched area. The presented data is an average of three 
independent experiments.

Transwell migration assay
To investigate the amiR-6 impact on migration, a transwell 
assay was carried out on the transfected BC cells using 
transwell plates (SPL) with an 8.0 µm pore size. Briefly, 1 
× 105 MDA-MB-231 and SK-BR-3 cells were transfected 
with amiR-6. After 48 h, the cells were trypsinized, rinsed 
with PBS, added to a serum-free medium, and cultured in 
the upper chamber of the inserts. As a chemoattractant, 
10% FBS medium was added to the lower chamber. After 
culturing with 5% CO2 at 37 °C for 48 h, cotton wool 
was used to gently remove the cells that did not migrate 
through the pores. The inserts were then observed by 
inverted microscopy after being fixed with 20% methanol, 
stained with 0.2% crystal violet, and dried. Five distinct 
fields were used to count the migrated cells.

Statistical analysis
The normal distribution of data was confirmed using 
SPSS version 22 software and the Kolmogorov-Smirnov 
test.32 The relative gene expression was obtained using the 
Pfaffl method.33 To investigate the possible relationship 
between the CALU transcription and clinicopathological 
features, SPSS version 22 software, independent-sample 
t-test, one-way ANOVA, and Duncan’s multiple range 

test were used. A 95% confidence interval was considered 
for all quantitative tests, and P values less than 0.05 were 
considered significant.

Results and Discussions
Evaluation of relative CALU mRNA expression in tumor 
vs. normal breast tissues
Evaluation of CALU expression among BC patients, based 
on the results obtained from RT-qPCR, showed a 3.4-
fold increase in CALU transcript levels in breast tumor 
tissues compared to normal adjacent tissues (Figure 2A). 
Our data aligns with findings from Pan-cancer analyses, 
which reveal that CALU is consistently upregulated in 
BC, particularly the aggressive basal-like (triple-negative) 
subtype, and associated with poor prognoses.26 In vitro 
studies further demonstrate high CALU expression in 
triple-negative BC (TNBC) reverses EMT and inhibits 
migration, suggesting its significant role in promoting the 
mesenchymal transition and aggressive potential of this 
subtype.26 While the specific mechanisms and relationship 
to hormone receptor status warrant further investigation, 
CALU holds promise as a diagnostic or prognostic 
marker, especially in TNBC. Further investigation of 
CALU expression in Luminal A/B and HER2-enriched 
subtypes35 could also reveal valuable insights into its role 
in BC progression.

Other studies also revealed a 10-fold increase in CALU 
expression in breast tumor interstitial fluid,34 and a 4-fold 
increase in CALU expression in a metastatic breast cell 
line compared to non-metastatic cells.35 Variation in the 
CALU expression during tumor progression was reported 
in other cancers, although the variation pattern is tissue-
specific.1 In most cancer types, such as oral cancer,36 
colon and lung cancers,22 and more malignant gliomas,5 
enhancement of the CALU expression has been evidenced. 
In contrast, down-regulation of CALU in metastatic cell 
lines of head and neck,37,38 hepatocellular and pancreatic 
carcinoma,2,21 and lung squamous cell carcinoma,39 were 
shown. Differential regulation of the CALU has been 
observed in various malignancies, indicating its potential 
as a prognostic marker.40 

Correlations between clinicopathological features and 
CALU expression
Classification of the BC tissue samples was performed 
based on various clinicopathological features such as 
pathological type, histological grade, Ki-67 status, tumor 

Figure 1. A schematic view of EGFP-Int-amiR-6 expression cassette, inserted within the pcDNA3 plasmid. The CALU-specific miRNA (amiR-6, Red), within a 
truncated FIX intron 1 (Blue), downstream to an EGFP coding sequence (Green) are shown
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size, lymph node involvement, TNM (stands for tumor 
size, lymph node number and position, and metastasis) 
staging, receptor status, including estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth 
factor receptor 2 (HER-2), in addition to features such as 
necrosis, calcification, vascular invasion, and perineural 
invasion, outlined in Table 2. The analysis of the CALU 
expression variations, considering the clinicopathological 
features, demonstrated significant correlations between 
the CALU expression and features, including TNM 
staging, lymph node involvement, vascular invasion, 
histological grading, and Ki-67 index (Figure 2).

The samples were categorized into groups 1, 2, and 3, 
which correspond to stages 1/0, 2, and 3, respectively, 
based on the TNM staging (Figure 2B). According to an 
intergroup analysis, samples from stages 1.0 and 3 had the 
highest and lowest CALU transcription levels, respectively, 
with a significant difference (P-value < 0.02). Patients 
were classified as either positive or negative for vascular 
invasion depending on whether the disease recurred 
or did not. Patients with negative vascular invasion 
had higher levels of CALU expression than those with 
positive vascular invasion; however, this difference was 
not statistically significant (P value = 0.052) (Figure 2C). 
Patients’ status was classified as either positive or negative 
based on the involvement of lymph nodes. Compared to 
individuals with positive status, those with negative status 
had noticeably greater amounts of CALU transcripts 
(Figure 2D). 

The analyses revealed that in BC tissues, the highest 
amount of CALU transcription happened between 
stages 0 and 1 when vascular invasion and lymph node 
involvement were still absent. This finding indicates that, 
while still higher than in normal tissues, CALU expression 
gradually declines as BC advances and lymph nodes and 
vascular invasion occur. Afterward, the transcription level 
of CALU decreased as the number of affected lymph nodes 
increased. The tumor microenvironment (TME) may be 
the reason why CALU expression levels rise during the 
beginning of BC and fall subsequently. Even though 
CALU expression has decreased in cancerous tissue, it is 
still greater than in healthy tissues.

To distinguish between the luminal A and luminal 
B stages of BC, a midpoint of 14% was proposed as the 
ideal limit for Ki-67 evaluation.41 Our analysis showed 
that samples with ki-67 > 14% had higher CALU mRNA 
expression than samples with ki-67 < 14% (Figure 2E). 

There were notable changes in CALU expression 
between the two groups of investigated samples based on 
histological grade. Tumor samples of grades 1 and 2 were 
included in group 1, while only grade 3 tumor samples 
were included in group 2. Grade 3 samples had a greater 
average CALU mRNA level than grades 1 and 2 samples 
(Figure 2F). 

It is advised to employ Histological grade42 and Ki-67,43 
two significant prognostic factors in the early stages of 
BC, together for a more precise evaluation.7 Both of these 
characteristics and the CALU transcription were directly 

Figure 2. The CALU transcription assessment, concerning clinicopathological features of the BC patients. (A) Comparison of the CALU transcription in tumor 
and normal tissues in women with BC. The CALU transcriptions at different TNM stages of BC (B), in breast tumor samples with the negative status of vascular 
invasion compared with positive status (C), in tumor samples from patients with negative status of lymph node involvement compared with those of samples 
with positive status (D), at different levels of ki-67 (E), and different histological grades among BC tissues (F). The use of asterisks denotes notable variances in 
comparison to the control group. * = P ≤ 0.05, ** = P ≤ 0.01
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correlated in our study, confirming the link between the 
CALU and the invasive nature of BC.5,8

Evaluation of the effects of CALU knockdown on the BC 
cells
When CALU transcription was evaluated in SK-BR-3 
cells transfected with a plasmid encoding amiR-6, CALU 
was successfully knocked down (Figure 3A). GDF-15 
expression was likewise reduced in these cells as a result 
of amiR-6-mediated CALU knockdown (Figure 3B). 
According to a previous study, the colorectal SW480 cell 
line’s GDF-15 is stimulated by the CALU nuclear isoform 
,CALU-15, which increases cell motility and filopodia 
production in colon cancer.8 Numerous biological 
processes have been reported as being regulated by GDF-
15, which exhibits both tumor promoter and tumor 
suppressor properties.44,45 

GDF-15 promotes the migratory and invasive 
phenotype of BC cells in vitro by activating the actin 
cytoskeleton-regulating genes alpha Parvin (PARVA), 
RhoA, Rho-associated protein kinase-1 (ROCK-1), and 
Facsin-1, according to a systematic review conducted 
to revisit the potential involvement of GDF-15 in cell 
metastasis in various cancer types.46 It has previously been 
suggested that GDF-15 contributes to the development 
of BC by triggering signaling pathways that regulate 
EMT and cellular invasion,47 as well as the acquisition of 
characteristics similar to those of cancer stem cells.48,49

While GDF-15 promotes BC cells’ migratory and 
invasive characteristics, its effects vary depending on the 
cancer type. For instance, GDF-15 has been demonstrated 
to have proapoptotic and anti-metastatic properties in 
colon carcinoma cells,50 lung cancer,51 and ovarian and 
prostate cancer cell lines.52 There is also evidence that 
overexpression of GDF-15 inhibits the tumorigenicity of 
LN-Z308 glioblastoma cell line.53 

Apart from its carcinogenic activity, CALU’s isoforms 
found in the ECM and secretory pathway were also found 
to have a tumor-suppressive function.21,54 The interaction 
between the extracellular CALU isoforms and fibulin-1, a 
member of the ECM fibulin family that is directly linked 
to fibronectin, is the basis for the tumor suppressor effects 
of the CALU isoforms.55 By establishing a compound with 
fibulin 1, the extracellular CALU isoforms stop MMP-13 
from degrading it. This cooperation restricts cell migration 
via an integrin and extracellular signal control, as well as 
the protein kinases 1 and 2 (ERK1/2) signaling pathway.21 
Through its interactions with integrins, syndecans, and 
cell surface receptors, Fibilin-1 mediates cell adhesion.56-58

The amiR-mediated CALU-knockdown suppressed EMT 
in the BC cells
Suppression of EMT markers is anticipated to reduce 
the invasive and metastatic potential of BC cells in vivo, 
as EMT is a crucial and first stage in the metastasis 
cascade. To break through the basement membrane, 

Table 2. Correlations between the BC clinicopathological features and CALU 
expression.

Clinicopathological 
features

Different 
states

The number of 
patients (%)

CALU 
expression 

(mean ± SEM)

P 
value

Age (year)

˂45 15 (27.27) 3.28 ± 1.59

0.79
45-55 22 (40) 4.56 ± 2.18

˃55 16 (29.09) 2.34 ± 1.49

Not known 2 (3.63) NA

Pathological type

IDC 35 (63.63) 3.67 ± 1.39

0.82
ILC 9 (16.36) 3.74 ± 2.81

Others 8 (14.54) 3.11 ± 2.73

Not known 3 (5.45) NA

Histological grade

1 & 2 37 (67.27) 2.13 ± 0.90

0.033 16 (29.09) 6.76 ± 2.89

Not known 2 (3.63) NA

Ki-67

 ≤ 14% 7 (12.72) 0.55 ± 0.41

0.05˃14% 26 (47.27) 4.85 ± 1.99

Not known 22 (40) NA

Tumor size

 ≤ 2 22 (40) 4.76 ± 1.80

0.39
2-5 28 (50.90) 2.86 ± 1.52

˃ 5 2 (3.63) 0.99 ± 0.80

Not known 3 (5.45) NA

Lymph node 
Involvement

Negative 26 (47.27) 5.80 ± 2.02

0.005Positive 27 (49.09) 1.34 ± 0.77

Not known 2 (3.63) NA

TNM stage

0 & 1 16 (29.09) 6.37 ± 2.36

0.02
2 24 (43.63) 3.37 ± 1.76

3 12 (21.81) 0.34 ± 0.16

Not known 3 (5.45) NA

ER

Positive 41 (74.54) 4.34 ± 1.40

0.56Negative 11 (20) 0.81 ± 0.32

Not known 3 (5.45) NA

PR

Positive 39 (70.90) 3.92 ± 1.39

0.83Negative 13 (23.63) 2.60 ± 1.68

Not known 3 (5.45) NA

HER-2

Positive 12 (21.81) 4.10 ± 2.36

0.99Negative 26 (47.27) 2.02 ± 0.97

Not known 17 (30.90) NA

Necrosis

Present 25 (45.45) 3.25 ± 1.69

0.62Absent 21 (38.18) 3.79 ± 1.68

Not known 9 (16.36) NA

Calcification

Present 9 (16.36) 2.97 ± 2.20

0.84Absent 38 (69.09) 4.20 ± 1.44

Not known 8 (14.54) NA

Vascular invasion

Present 27 (49.09) 2.12 ± 1.42

0.01Absent 23 (41.81) 5.64 ± 1.84

Not known 5 (9.09) NA

Perineurial invasion

Present 11 (20) 3.11 ± 2.32

0.60Absent 34 (61.81) 3.72 ± 1.43

Not known 10 (18.18) NA
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intravasate, circulate, and extravasate at distant locations, 
cancer cells must undergo EMT.59 It has previously been 
hypothesized that by reversing EMT, CALU knockdown 
may disrupt metastasis processes and limit the ability 
of cancer cells to spread.60 To examine this hypothesis, 
the expression assessment of EMT-related markers, 
including SNAI1, TGF-b1, ZEB1, ZEB2, SNAI2 (SLUG), 
GSC, MMP2, TIMP1, and TWIST in the SK-BR-3 BC 
cell line, was performed at 48 h of post-transfection 
with amiR6. Overexpression of amiR-6 in the SK-BR-3 
BC cell line showed inhibitory effects on the studied 
EMT markers (Figure 3C). This result could have been 
caused by GDF-15 downregulation (Figure 3B), which 
is corroborated by earlier studies showing that GDF-15 
promotes the expression of EMT markers, SNAIL and 
TWIST in colorectal cancer.48,61,62 These two proteins play 
a role in suppressing the epithelial phenotype by directly 
inhibiting the expression of E-cadherin.63,64 The potential 
of CALU as a hallmark of EMT is supported by the results 
acquired thus far from the CALU knockdown technique 
in the SK-BR-3 cell line, which are in accord with other 
reports.34,35,40,54,65

The regulatory role of CALU in EMT in BC was validated 
by Chen et al in a recent pan-cancer screening study. This 
investigation demonstrated that CALU, a crucial element 
of the TME, promotes cell migration through EMT.26 
To further restrict invasion and metastasis, it appears 
that CALU knockdown may have an impact on the 
interactions between cancer cells and stromal cells in vivo.

Research on gliomas has shown that EMT phenotype 
is closely linked to genes relevant to CALU.5 Several 
immunohistochemical tests, the Gene Expression 
Omnibus (GEO) database, and the Cancer Genome 
Atlas (TCGA) have also revealed CALU to be one of the 
most prevalent proteins expressed in cancer-associated 
fibroblasts (CAF), supporting its inclusion in the signature 
of EMT-related genes in gastric cancer.66 

According to the findings of the previous stage, which 
demonstrated the impact of CALU on GDF-15 expression, 
the results of the evaluation of the EMT marker of cells 
treated with amiR-6 validate the relationship between 
CALU and EMT markers as well as its regulatory function 
in cancer-related processes. The results obtained from the 
evaluation of the EMT marker of cells treated with amiR-
6, in line with the inhibitory function of CALU on GDF-
15 expression, support the association of CALU with 
EMT markers and cancer-related processes. While in vivo 
studies are needed to validate these findings, our results 
suggest that CALU is a promising therapeutic target for 
inhibiting BC metastasis.

Effect of amiR-mediated degradation of CALU on 
proliferation, apoptosis, and migration of BC cell lines
CALU knockdown inhibited the proliferation of BC cell 
lines
The SK-BR-3 cell line was assessed alongside the MDA-
MB-231 cell line to examine the impact of amiR-mediated 
CALU knockdown on BC cell proliferation after the 

Figure 3. The expression levels of CALU (A), GDF-15 (B), and EMT markers (C) in the SK-BR-3 cell line, using qRT-PCR, following the AmiR-6 overexpression, 
at 48h post-transfection. The names of markers are given. * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001
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crucial influence of CALU on EMT was demonstrated 
in this cell line. Cell proliferation was then evaluated at 
24 and 48 hours, using trypan blue staining techniques. 
At 48 hours after transfection, amiR-6 dramatically 
decreased cell proliferation in both treated BC cell lines, 
when compared to the control group (Figure 4A, B). 
Using cell cycle analysis, we further validated this result 
(Figure 4C, D). The G1 phase cell population of the amiR-
6 transfected group was significantly higher than that of 
the control group, according to the data. 

Knockdown of CALU-induced apoptosis in BC cell lines
At 48 hours after amiR-6 transfection, the cell lines MDA-
MB-231 and SK-BR-3 BC were simultaneously stained 
with ethidium bromide and acridine orange to examine 
the impact of CALU knockdown on apoptosis in BC 
cells. Acridine orange exhibits green or red fluorescences 
to dsDNA or ssDNA/RNA, depending on whether it is 
absorbed by living or dead cells. On the other hand, 
ethidium bromide only penetrates non-viable cells, where 
it attaches itself to DNA and emits red fluorescence.67

The cells transfected with amiR-6 were yellow to orange, 
suggesting the presence of apoptosis, whereas both BC cell 
lines analyzed in the control group were green, showing 
the lack of apoptosis (Figure 5A, C). The apoptotic cells 
were confirmed and measured by flow cytometry analysis. 
Approximately 15.44% of the transfected SK-BR-3 cells 
accounted for apoptotis (early and late apoptosis) (Figure 
5B), while 23.21% of the transfected MD-MB-231 cells 
accounted for apoptotis (Figure 5D). Estimation of the 
percentage of apoptosis in both SK-BR-3 and MDA-
MB-231 cells after transfection with amiR-6, suggests that 
the CALU-knockdown significantly increased apoptosis 
in the BC cells (Figure 5E). 

Knockdown of CALU inhibited the migration of BC cell 

lines
A transwell experiment was used to investigate the 
impact of amiR-6-mediated CALU-knockdown on the 
migration of two BC cell lines. The results demonstrated a 
significant decrease in the migratory capacity of both cell 
lines 48 hours after transfection (Figure 6). According to 
our results, fewer migratory cells adhered to the bottom 
of the chamber when CALU was knocked down by amiR-
6 (Figure 6A, B). In addition to the transwell migration 
test, a wound healing experiment was used to show how 
CALU knockdown affected the migration of BC cells. 
The migratory rate of the BC cells in the scratched areas 
decreased significantly for both BC cell lines after amiR-6 
expression (Figure 6C, D). The conclusion, that CALU can 
successfully affect BC cell migration, was corroborated by 
the results of the transwell migration and wound healing 
assays.

After demonstrating the beneficial effect of CALU on 
EMT in SKBR3, we demonstrated that CALU knockdown 
results in cell cycle arrest, a higher percentage of necrotic 
and apoptotic cells, and decreased proliferation and 
migration in both BC cell lines by using the knockdown 
technique in both SKBR3 and MDA-MB-231 cell lines. 
These findings are consistent with the EMT marker 
analysis results, demonstrating the critical function of 
CALU in BC metastatic promotion. In colon and lung 
tumors, our group recently described the involvement of 
CALU in inducing metastases.22 These results are in line 
with reports that indicate CALU plays a role in increasing 
the invasion, migration, metastasis, and proliferation of 
cancer cells during the carcinogenesis process.68,69 In more 
recent work, Li and colleagues reported the promoting 
function of CALU in lung adenocarcinoma progression 
by enhancing cell proliferation, migration, and invasion.40 
Consistent with these findings, upregulation of CALU and 
other known CAF markers, such as periostin (POSTN, 

Figure 4. The proliferation assessment of the BC cell lines, SK-BR-3 (upper row), and MDA-MB-231 (lower row), before and after the amiR-6 overexpression. (A, 
B) Trypan blue staining assessments. (C, D) Cell cycle analysis. * P < 0.05, ** P < 0.01, *** P < 0.001)
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or PSTN), α-smooth muscle actin, and podoplanin, 
was demonstrated in lung adenocarcinoma, suggesting 
CALU, as a CAF-derived molecule, act effectively 
in cancer promotion.9 Focusing on TNBC-specific 
mechanisms, that allow the expansion and activity of 
self-renewing therapy-resistant cancer stem cells (CSC), 
CALU was found among the Top 30 upregulated genes 
in CD44-high/CD24-low cluster and suggested as a CSC 
regulator in TNBC and other cancers.70 Thus, strategies 
aimed at inhibiting CALU expression or activity could 
potentially disrupt cancer progression, sensitize cancer 
cells to apoptosis, inhibit EMT, and reduce metastasis.71

CALU regulates numerous cellular functions in 
significant ways.72,73 It promotes vascular calcification 
by reducing gamma-carboxylation and inhibiting the 
activation of matrix Gla protein.57,58 Moreover, CALU 
is crucial for maintaining calcium homeostasis,1 and 
controlling the uptake of Ca2 + during smooth muscle and 
cardiac contraction and excitation.74 Furthermore, CALU 
plays a part in iron-dependent cell death, gene alterations, 

and TME remodeling.6 It has been proposed that CALU is 
an upstream regulator that affects several pathways and, 
consequently, the development of cancer.40 Both in vitro 
and in vivo, the amiR-mediated CALU knockdown of 
mucosal melanoma cells caused apoptosis and cell cycle 
arrest while suppressing cell growth, migration, invasion, 
and metastasis, most likely by blocking phosphorylated 
extracellular signal-regulated kinase (ERK) signaling.69 
Additionally, it has been demonstrated that CALU 
regulates apoptosis, and that apoptosis dysregulation leads 
to cancer cell survival and chemotherapy resistance.68,75,76

The CALU knockdown’s impact on cell migration 
may be mediated through disruptions in key signaling 
pathways such as integrin, MAPK, and PI3K/AKT. 
Integrins, essential for cell-ECM interactions and 
migration, could be affected by CALU’s role in EMT and 
TME modulation.77,78 Furthermore, CALU may influence 
the MAPK pathway via GDF-15,79,80 and GDF-15 can 
activate AKT, impacting downstream targets involved in 
cell survival, growth, and migration.81,82 However, further 

Figure 5. The impact of the AmiR-6 overexpression on apoptosis in the BC cell lines. Acridine orange/ethidium bromide (AO/EB) staining (A, B). Apoptosis 
analysis using PI staining (PI, Y-axis) and Annexin-FITC (X-axis) (C, D). (Q1 = necrotic cells, Anx- /PI + ; Q2 = late apoptotic cells, Anx + /PI + ; Q3 = early 
apoptotic cells, Anx + /PI-; and Q4 = living cells, Anx-/ PI-). E) “Quantification of apoptosis (%) in SK-BR-3, and MDA-MB-231cells after CALU knockdown”
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investigation is required to fully elucidate the specific 
mechanisms and confirm the involvement of these 
pathways in CALU’s regulation of BC cell migration. 

In tumor tissues from mice with BC, Menon, and 
colleagues found that the CALU-1 isoform was up-
regulated whereas CALU-2 expression remained 
unchanged,83 supporting the idea that CALU isoforms are 

differentially expressed. In this context, it is noteworthy 
that CALU-15 has been shown to have the opposite effect 
on tumor progression when compared to other CALU 
isoforms of the secretory pathway.8,21 This finding may 
contribute to the regulating role of CALU in processes 
connected to cancer. Given the proposed function of 
CALU-15, more research is necessary to clarify the 

Figure 6. The effect of the amiR6-mediated CALU knockdown on the migration rates of the BC cell lines, by performing wound healing assay. The microscopic 
picture of the cells (A), and the migration rate (%) assessment of the cells at 0, 24, and, 48 h of post-transfection (B). The distances of the cell-free surface, are 
measured by image j software (C, D). * = P ≤ 0.05, ** = P ≤ 0.01.
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mechanisms of action of CALU isoforms and their 
potential connection to processes connected to BC.

The CALU-mediated knockdown approach with 
CALU-specific miRNA adopted in this study revealed the 
impact of CALU on the gene(s) or pathways associated 
with BC progression. However, when it comes to cancer 
treatment, this approach could also provide a suitable 
strategy for targeted therapy approaches by silencing 
gene(s) that are involved in tumorigenesis. The miRNA-
mediated knockdown holds promise, because of its ability 
to modulate gene expression levels, without turning it off, 
impacting key pathways involved in cancer progression. 
The clinical implications of this approach are vast, 
from direct tumor suppression to combat therapeutic 
resistance, even in personalized cancer therapies, and in 
combination cancer therapies.23,84,85

Our study has limitations, including its in vitro nature, 
limited cell lines, potential off-target microRNA effects, 
unclear molecular mechanisms, and small clinical sample 
size. These factors should be considered when interpreting 
the results. Future research should involve in vivo studies, 
more diverse cell lines, stricter microRNA controls, 
mechanistic investigations, larger clinical cohorts, and 
blind reviewing of clinicopathological features.

Conclusion
Altogether, the evidence presented in this study, including 
the upregulation of CALU in BC tissues and its correlation 
with the main clinicopathological features in BC patients, 
in addition to the result of CALU knockdown, have 
confirmed the metastasis-promoting role of CALU, 
which occurs via inhibiting apoptosis and enhancing 
the proliferation, migratory and invasive abilities of BC 
cells. These intriguing observations warrant further 
investigation into the specific mechanisms of CALU’s 
regulatory role. Understanding these mechanisms and 
their association with different CALU isoforms could 
lead to the development of CALU-targeted therapeutic 
interventions tailored to specific types of cancer, thus 
offering a promising path for clinical translation. In 
addition, our study provides valuable experimental 
and foundational data for further research and a more 
comprehensive understanding of the molecular function 
of CALU in BC.
A key strength is our use of a amiR-mediated knockdown 
approach, which may offer advantages in terms of long-
term gene silencing compared to traditional siRNA 
methods. Furthermore, our study provides strong 
evidence for a correlation between CALU expression and 
a comprehensive set of clinicopathological features in 
BC patients. We also performed a detailed analysis of the 
effects of CALU knockdown on various cellular processes. 
However, like many in vitro studies, our findings may not 
fully recapitulate the complexity of the TME in vivo. In 
addition, the precise molecular mechanisms underlying 

the effects of CALU knockdown remain unclear, and our 
clinical sample size was relatively small. Future studies 
may address these limitations. 
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