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Introduction
The liver serves as a vital center for numerous physiological 
processes, including the metabolism of macronutrients, 
regulation of blood volume, immune system support, 
endocrine control of growth, signaling pathways, 
homeostasis of lipid and cholesterol, and the detoxification 
of xenobiotic compounds, including many existing drugs.1 
Liver diseases form a heterogeneous group of acute and 
chronic disorders with various etiologies, including drug-
induced liver injury, acute-on-chronic liver failure, and 
non-alcoholic fatty liver disease, with a predominance 
of viral hepatitis and cancerous state.2 Acute liver failure 
(ALF) is an uncommon medical condition characterized 
by rapid decline in liver function, leading to significant 
deterioration and coagulopathy in patients without a prior 
history of liver disorders, which often impacts young 

people and is associated with considerable morbidity 
and mortality.3 In developed countries, the primary 
factor contributing to ALF is liver damage caused by 
pharmaceuticals, most commonly by paracetamol. Other 
causes are acute viral infections of hepatitis A, B, and E.4 

ALF causes a recurrent inflammatory response that 
triggers the production of liver fibrosis (LF). Over time, 
fibrosis can progress to cirrhosis, the advanced stage of 
ALF. Cirrhosis is a significant precancerous condition for 
hepatocellular carcinoma (HCC). The typical effect of all 
these disorders on the liver is the emergence of chronic 
inflammation, resulting in an abnormal wound-healing 
response.5 

Given the liver’s vulnerability to a range of diseases, 
understanding the involvement of liver macrophages 
in the inflammatory response becomes crucial for 
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Abstract
Liver fibrosis (LF) is a pathological condition resulting from a chronic inflammatory response 
to multiple etiological factors, including viral infections, excessive alcohol consumption, and 
metabolic disorders. The important role of macrophages in this process, especially the M2 
subtype, has attracted attention as a potential target for macrophage-based immunotherapy. M2 
macrophages have anti-inflammatory and reparative properties that enable them to modulate the 
immune response and facilitate repairing damaged tissues. They participate in reducing fibrogenic 
features in term of gene expression and histological markers associated with LF. These cells 
phagocytose apoptotic cells and matrix components. M2 macrophage-based immunotherapy 
has shown great potential in ameliorating LF through mechanisms involving the IL-10/STAT3 
and TGF-β/SMAD signaling pathways, which are essential in suppressing the pro-inflammatory 
response and supporting tissue regeneration. However, significant challenges such as individual 
resistance to therapy and the potential for promoting fibrosis suggest that further development and 
research are needed to optimize the safety and efficacy of this therapy in clinical applications. 
This study provides comprehensive insights into the role of M2 macrophages in LF and explores 
their potential as an innovative therapeutic approach in treating LF.
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developing effective therapeutic strategies against LF. 
Liver macrophages are vital members of the mononuclear 
phagocyte system, playing a central role in inflammation-
related liver disorders due to their ability to respond to 
diverse activating signals.6 Macrophages in the liver 
are categorized into two different phenotypes: M1 and 
M2. The M1 phenotype is distinguished by its elevated 
synthesis of pro-inflammatory cytokines, heightened 
levels of reactive nitrogen and oxygen species, initiation of 
Th1 responses, and potent microbicidal and tumoricidal 
capabilities. M2 macrophages are crucial in controlling 
parasite infections, facilitating tissue restructuring 
and tumor progression, and regulating immunological 
reactions.7 The activation of M2-phenotype macrophages 
releases profibrotic cytokines, which contribute to LF 
through the interleukin (IL)-13 receptor alpha 1 pathway.8 
The prevalence of M2-like macrophages in LF, together 
with their profibrotic functions, and the ability to modify 
their polarization and activity, provide a compelling 
rationale for targeting M2 macrophages as a therapeutic 
strategy in LF. Therefore, this study is to provide an 
understanding of M2 macrophage-based immunotherapy 
and its potential as a therapeutic approach in LF. This 
objective is achieved by discussing LF pathogenesis and 
treatment, macrophages in LF, M2 macrophage functions 
and characteristics, M2 macrophages in LF, preclinical 
evidence, therapeutic approaches, the benefits of targeting 
M2 macrophages in LF therapy, and future perspectives 
based on the information obtained. The scope of the 
information is limited to the liver, LF, M2 macrophages, 
and M2 macrophages as a therapeutic approach in LF.

Liver fibrosis: pathogenesis and current therapy
LF is a condition that arises because of the activation 
of the hepatic stellate cells (HSCs) as shown in 
Figure 1. HSCs are localized perisinusoidal cells found in 
the subendothelial region situated between hepatocytes 
and sinusoidal endothelial cells.9 This area, filled with 
permeable connective tissue, facilitates the exchange of 
biomolecules between portal blood and hepatocytes.10 In 
response to liver injury, quiescent HSCs proliferate and 
trans-differentiate into contractile myofibroblasts. This 
process is triggered by paracrine signals from neighboring 
cells, including Kupffer cells, hepatocytes, platelets, 
leukocytes, and sinusoidal endothelial cells. Kupffer cells, 
in particular, drive HSCs activation and proliferation 
through the release of cytokines such as TGF-β1, IL-1, 
tumor necrosis factor (TNF), reactive oxygen species 
(ROS), and lipid peroxides.11 TGF-β1 is a central cytokine 
in HSC activation and is a major mediator of LF.12

Recently, there have been many LF therapy variations, 
such as drug therapy, cell therapy, and liver transplantation 
and extension, as shown in Table 1.

M2 macrophages: Characteristics and functions
The liver houses ninety percent of the body’s macrophages, 

which originate from various sources, leading to 
significant cellular diversity. This diversity results in 
varied cytokine production, cell surface markers, and 
transcriptional profiles. Macrophages are essential 
immune cells in various inflammatory processes and 
tissue healing, particularly in the context of LF. Several 
studies have shown that macrophages in tissues, including 
the liver, exhibit ontogenetic heterogeneity, originating 
from both embryonic sources, such as Kupffer cells, 
and from bone marrow-derived monocytes. These two 
origins play distinct roles in regulating the development 
and resolution of LF, leading to different macrophage 
subsets having varying effects on LF.26 Migration and 
transformation of hepatic macrophages happen based 
on the microenvironmental signals, allowing them to 
adopt pro-inflammatory (M1) or anti-inflammatory 
(M2) roles.27 

M2 macrophages, also known as alternatively activated 
macrophages, represent a specific subtype of macrophages 
that are involved in immune regulation, tissue repair, 
and inflammation resolution (Figure 2). Primarily, this 
phenotype is activated by IL-4 and IL-13 produced by 
T helper 2 (Th2) cells,28 and typically identified by their 
notable expression of functional surface marker such as 
CD163.29 Nevertheless, macrophage malfunction can 
hinder the normal tissue repair process and conversely, 
facilitate the occurrence of fibrosis, the accumulation 
of type I and III collagen, and the activation of 
myofibroblasts.30 An excessive amount of M2 macrophages 
is associated not only with fibrosis, but also with cancer,31 

Figure 1. Mechanism of HSCs activation. The sequence of events in liver 
injury leading to fibrosis begins with hepatotoxic signals that induce necrosis 
or apoptosis of hepatocytes, leading to the release of cellular contents and 
ROS. The release of damage-associated molecular patterns (DAMPs) and 
signaling molecules such as C-C motif chemokine ligand 2 (CCL2) and IL-33 
is a consequence of this cellular damage. Simultaneously, macrophages are 
also activated, releasing pro-inflammatory cytokines (TNF-α, TGF-β1, IL-1α, 
IL-1β) that activate HSCs. Activated HSCs produce collagen and extracellular 
matrix components, which contribute to the formation of liver fibrosis
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chronic obstructive pulmonary disease (COPD),29 and 
acute kidney injury.32

Research into the role of M2 macrophages in LF is 
ongoing, but early findings suggest that targeting M2 
macrophages could represent a viable therapeutic approach 
for managing LF (Table 2). Therapeutic agents can be used 
to increase the number of M2 macrophages in the liver, 
which may help reduce inflammation and promote tissue 
repair, enhancing M2 macrophage activity.33 

M2 macrophages in liver fibrosis: Insights from 
experimental and clinical research
Multiple preclinical and clinical investigations have 
examined the involvement of M2 macrophages in the 
progression of LF. Research conducted in laboratory 
settings and on patients indicates that M2 macrophages 
are crucial function in regulating the inflammatory 
milieu, fibroblast activity, and resolving fibrosis. The 
findings of these investigations are presented in Table 3, 

which demonstrates the impact of M2 macrophages on 
the process of fibrogenesis.

Therapeutic approaches targeting M2 macrophages in 
liver fibrosis
The most effective method of preventing fibrosis is to 
address the underlying causes, such as discontinuing 
alcohol consumption in patients with alcoholic liver 
disease. Nevertheless, this approach is not viable when 
other factors precipitate LF. Current management of LF 
primarily focuses on preventing further damage, reducing 
inflammation from viral infections, the suppression of 
HSCs activation and proliferation, and promoting the 
breakdown of excessive ECM in the liver.48,49 However, 
these methods have had limited success in reversing 
established fibrosis. Emerging evidence suggests that 
targeting macrophages, particularly the pro-fibrotic M2 
phenotype, may offer a promising therapeutic approach 
for LF. Although the mechanisms and therapeutic 

Table 1. Current treatment for liver fibrosis

Therapy Objective Mechanism Reference

Drug therapy

Sofosbuvir Primarily for hepatitis C treatment Reduces inflammation and fibrosis 13,14

Ledipasvir
Approved for hepatitis C, often combined 
with sofosbuvir

Inhibits HCV replication 13

Lutathera (Lutetium Lu 177 
Dotatate)

Approved for neuroendocrine tumors Helps reduce tumor-related fibrosis 15

Obeticholic Acid Approved for NASH and fibrosis
Farnesoid X receptor (FXR) agonist; reduces bile acid synthesis and 
inflammation, impacting fibrosis progression

16

Pirfenidone
Approved for idiopathic pulmonary 
fibrosis (IPF); in trials for LF

Inhibits fibrosis and inflammation; originally used for IPF). 17

Nintedanib Approved for IPF; in trials for LF Tyrosine kinase inhibitor; target multiple pathways involved in fibrosis 18

Cenicriviroc (CVC) In clinical trials for NASH
CCR2/CCR5 antagonist; reduces inflammation and fibrosis by 
blocking specific receptors

19

Resmetirom (MGL-3196) In clinical trials for NASH
Thyroid hormone receptor beta agonists aim to reduce liver fat and 
fibrosis.

20

Cell therapy

Endothelial progenitor cells 
(EPCs)

Restore liver function and increase 
survival rate

Suppress HSCs reduce levels of aspartate aminotransferase (AST) and 
alanine aminotransferase (ALT) and enhance hepatocyte proliferation 
and expression of hepatocyte growth factor (HGF) and vascular 
endothelial growth factor (VEGF) in serum

21

Bone marrow mononuclear 
cells (BMMNCs)

Improve mitochondrial bioenergetics
Stimulate liver oxidative capability, reduce oxidative stress, and 
regulates mitochondrial coupling and biogenesis.

22,23Bone marrow mesenchymal 
stem cells (BMMSs)

Reduce collagen, induce HSCs apoptosis, 
reduce pro-inflammatory cytokines, and 
aid liver enzyme recovery.

Decrease collagen deposition, promote HSCs apoptosis, and 
improve liver enzyme levels.

Adipose-derived mesenchymal 
stem cells (ADSs)

Inhibit the activation and proliferation of 
HSCs and reduce AST/ALT levels.

More effective in preventing HSCs activation and proliferation and 
lowering AST/ALT levels.

Wharton’s Jelly mesenchymal 
stem cells (WJ-MSC) 
Extracellular vesicle (EV) 

Guiding macrophages toward an anti-
inflammatory immunophenotype 

EVs induce activated macrophages to modulate immune responses, 
potentially contributing to a protective function in LF pathogenesis 
by directly inhibiting the activation of HSCs

24

Human amniotic epithelial 
cells (hAECs)

Inhibit HSCs activation

LF is reduced by inhibiting TGF-β and PDGF signaling pathway 
while enhancing the secretion of anti-fibrotic factors such as PGE-2, 
BMP-7, and IL-10. It also reduces ECM deposition and revert the 
myofibroblast phenotype to fibroblast.

25

Transplantation

Liver transplantation Only life-saving option for advanced LF
Replaces a diseased liver with a healthy one, thereby restoring 
normal liver function.

22
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potential of M2 macrophages in LF are being actively 
investigated, a comprehensive understanding of their role 
in disease pathogenesis is still needed to fully exploit this 
target for effective treatment strategies. 

Macrophages exhibit remarkable plasticity, capable of 
adopting diverse phenotypes in response to the signals 
they receive from their surrounding environment. 
Given the contrasting roles of M1 and M2 phenotypes, a 
promising therapeutic approach is to shift macrophages 
from pathogenic to restorative phenotypes. However, 

this approach presents unique challenges, as excessive 
polarization towards the M2 phenotype can exacerbate 
fibrosis by stimulating collagen production and 
myofibroblast development.50 Therefore, therapeutic 
interventions should focus on reducing the accumulation 
and activation of M2 macrophages in the liver. Studies 
in other fibrotic diseases, such as idiopathic pulmonary 
fibrosis (IPF) and acute respiratory distress syndrome 
(ARDS)-associated fibrosis, have highlighted the critical 
role of M2 macrophages in driving excessive ECM 
deposition and impaired tissue repair.51,52

Another potential strategy is the selective depletion of 
M2 macrophages from the disease microenvironment. This 
can be achieved using agents that specifically target and 
induce apoptosis or depletion of M2 macrophages, such as 
clodronate-containing liposomes or antibodies targeting 
M2-specific surface molecules like CD163 or CD206.53 
Additionally, innovative CAR-T cell-based therapies are 
being developed to recognize M2 macrophage-specific 
antigens, particularly in oncology applications.54 In 
the context of LF, depleting M2 macrophages from the 
liver microenvironment can reduce their contribution 
to uncontrolled fibrotic processes, thereby slowing the 
progression of LF.27 This approach not only targets the 
fibrogenic activity of M2 macrophages but also holds 
potential for enhancing overall liver health and function.

Beyond depletion, reprogramming M2 macrophages 
into M1 macrophages offers a promising strategy to shift 
the liver microenvironment dynamics from a profibrotic 
to a pro-resolution state. M1 macrophages contribute 
in enhancing the immune response, facilitating tissue 
repair, promoting collagen degradation, and resolving 
inflammation, all of which can help prevent or mitigate 

Table 2. Studies on the role of M2 macrophages in liver fibrosis

Model Description Role of M2 Macrophages References

Carbon 
tetrachloride (CCl4)

CCL4-induced mice as a LF model.
M2 macrophages promote fibrogenesis by producing TGF-β to 
activate HSCs, increasing extracellular matrix (ECM) deposition, and 
facilitating resolution of LF through matrix metalloproteinases (MMPs). 

34

Bile duct ligation 
(BDL)

This rat model involves bile duct obstruction, 
leading to cholestasis and LF. This model allows 
the study of the initiation and resolution phases 
of LF.

M2 macrophages are activated by profibrotic cytokines and growth 
factors, promoting the deposition of collagen and ECM components 
that contribute to LF development. In the resolution phase, M2 is 
activated by pro-inflammatory signals to switch from profibrotic to 
antifibrotic function, promoting the degradation of collagen and other 
fibrotic components.

35

Diet-induced 
models

A high-fat diet is used to induce non-alcoholic 
fatty liver disease (NAFLD) in rats, which is 
characterized by steatosis, inflammation, and LF. 
This model is useful for studying LF among others.

In the initiation phase, M2 macrophages are activated by profibrotic 
cytokines and growth factors, promoting the deposition of collagen 
and ECM components. In the resolution phase, M2 contributes to the 
degradation of collagen and other fibrotic components.

36

Intraperitoneally 
with 3 μl/g (30%) 
CCI4 

BALB/c mice were injected with a lethal dose of 
hepatic toxin: Intraperitoneally with 3 μl/g (30%)
 CCI4 twice a week for 6 weeks to induce LF and 
acute liver injury

M2 macrophages resulted in a notable decrease in mRNA levels of 
injury mediatory (TNF-α, IL-1β, IL-6, IL-12, high mobility group box 1 
(HMGB1), and MMP-9), pro-inflammatory cytokines (IL-12, IL-17, and 
TNF-α), and developed apoptosis resistance in hepatocyte

37

Intraperitoneally 
(i.p) with 0.75 ml/
kg of CCl4

Intraperitoneally (i.p) injection of male mice to 
induce LF

Kupffer cell expanded in vitro had the potential of M1/M2 polarization 
of macrophage and can reduce the alpha-smooth muscle actin 
(αSMA)-positive signals, which means the reduction of HSCSs and 
decreased IL-1β, IL-6, and TNF-α level

38

Acetaminophen 
(APAP)

8-week-old mice were injected APAP in warm 
sterile saline to promote necrosis, acute liver 
injury, and LF

Macrophages rapidly mitigated liver damage and diminished various 
inflammatory mediators. 

39

Figure 2. Molecular mechanisms of M2 macrophages in LF. Pro-inflammatory 
M1 macrophages are activated by lipopolysaccharide (LPS) and activate 
HSCs in an active form contributing to fibrosis. The cytokines IL-4 and IL-
13 polarize M1 into anti-inflammatory M2 macrophages, which induce 
HSCs degradation through apoptosis. M2 macrophages also release matrix 
metalloproteinase (MMPs) to degrade ECM and reduce fibrosis
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the progression of LF. During LF progression, M2 
macrophages release various profibrotic mediators, 
such as TGF-β and arginase-1, which exacerbate fibrosis 
conditions. Targeting these mediators can disrupt the 
molecular pathways driving fibrosis, thereby reducing 
profibrotic stimulation, and slowing disease progression. 
Ying and colleagues’ study demonstrated that inhibiting 
TGF-β secreted by M2 macrophages effectively reduced 
HSC activation and collagen deposition.55 This approach 
not only addresses the immediate fibrotic response 
but also promotes a healthier liver microenvironment 
conducive to regeneration. 

Overall, therapeutic strategies targeting M2 
macrophages hold the potential to effectively intervene 
in LF progression either reducing profibrotic activity or 
promoting fibrosis resolution. Modulating the quantity, 
function, or secretory products of M2 macrophages is 
expected to improve the immunological and fibrogenic 
balance within the liver, ultimately slowing or even 
reversing LF progression. However, further research is 
essential to fully realize their therapeutic potential and 
develop more effective interventions for managing LF. 
Continued exploration in this area could pave the way 
for innovative treatments that enhance liver health and 
improve patient outcomes.

Rationale for targeting M2 macrophages in LF treatment
M2 macrophages represent a great potential for 
immunotherapy in LF due to their unique capabilities 
in modulating immune responses and promoting tissue 
repair. Recent studies highlight several advantages 
of utilizing M2 macrophages, particularly those 
derived from human induced pluripotent stem cells 
(iPSCs). These M2 macrophages have been shown to 
significantly downregulate fibrogenic gene expression and 
histological markers associated with LF.56 Furthermore, 
M2 macrophages are key players in modifying the IL-
10/TGF-β signaling pathway, which has therapeutic 
implications beyond LF. For instance, their involvement 
in alleviating Adriamycin nephrosis—a kidney disorder—

demonstrates their ability to suppress inflammatory 
responses and facilitate tissue repair. This mechanism 
suggests that similar strategies could be applied to enhance 
liver regeneration and recovery in LF patients.57

M2 macrophages are also crucial in fibrosis resolution 
by engaging in phagocytosis of apoptotic cells and ECM 
components, which facilitates tissue remodeling. They 
are also known to enhance fibroblast proliferation and 
collagen synthesis, thereby contributing to the healing 
process.58,59 Furthermore, M2 macrophages express 
arginase-1, an enzyme that is associated with suppression 
of fibrotic responses, further emphasizing their protective 
role in tissue repair.60 The important role of M2 
macrophages in wound-healing is also seen through the 
release of anti-inflammatory cytokines and micronutrient 
management to support tissue repair. However, in the 
context of chronic infection, M2 macrophages can 
paradoxically contribute to the development of tissue 
fibrosis and cancer while also to suppress Th1 immune 
responses.61 Supporting this duality, M2 macrophages 
have been shown to reduce ROS production and secrete 
a variety of anti-inflammatory factors, including IL-4, IL-
10, and insulin-like growth factor-1 (IGF-1). These factors 
not only promote tissue repair but also aid in the clearance 
of cellular debris and stimulate regenerative processes.62 
Thus, while M2 macrophages are essential for resolving 
fibrosis and promoting healing, their roles must be 
carefully considered within the broader context of chronic 
inflammatory diseases.

More specifically, M2 macrophages are involved 
in several critical signaling pathways that regulate 
inflammation and tissue repair. One key mechanism is 
the release of IL-10 by M2 macrophages, which activates 
the STAT3 signaling pathway. This activation is pivotal 
for the suppression of pro-inflammatory cytokines, 
thereby mitigating chronic inflammation and inhibiting 
the activation of HSCs. By doing so, IL-10 helps reduce 
collagen production and fibrosis, illustrating the anti-
fibrotic potential of M2 macrophages.61 STAT3 is a central 
convergence point of various signaling pathways involved 

Table 3. Preclinical and clinical studies about M2 macrophages in LF

Category Description References

In vitro
IL-4 and IL-13 can induce M2 macrophages to produce an anti-inflammatory environment that can promote fibrogenesis through the 
secretion of the profibrotic factor TGF-β.

40-42

In vitro Kupffer cells inhibit T cell response when induced with regulatory T cells 43

In vivo
M2-polarized macrophages protect hepatocytes against cell death, suggesting their role in providing protective effects against severe 
damage or lethal insults in the liver.

37

In vivo
M2 macrophages are capable of secreting cytokines like IL-10 and expressing signature molecules such as mannose receptors, which 
are commonly linked to the suppression of inflammation and the promotion of tissue repair.

44

In vivo
M2 macrophages depletion can reduce collagen accumulation and activate fibroblasts in LF, suggesting significant role in the 
progression of the disease

41,42

In vivo
Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves the purity, expression, and proliferation of Kupffer cells, and 
has the potential of M1/M2 polarization and phagocytosis, which can reduce the αSMA-positive signals, which means the reduction 
of HSCSs. and decreased IL-1β, IL-6, and TNF-α levels.

38

Clinical M2 can inhibit TGF-β production, reversing hepatocellular senescence and promoting fibrosis resolution. 42,45-47
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in inflammation, immunity, fibrosis, and oncogenesis. 
It functions as a key regulator of various macrophage 
biological activities.63 Additionally, M2 macrophages 
activate the TGF-β pathway, which engages the Sma and 
Mad-related protein (SMAD) signaling cascade. This 
pathway not only supports tissue regeneration but also 
inhibits excessive inflammatory responses. Although 
TGF-β can promote fibrosis, its activation by M2 
macrophages strikes a crucial balance between facilitating 
tissue repair and preventing HSCs activation. Activation 
of the TGF-β/SMAD pathway increases the expression of 
BW-derived M2 macrophage markers and decreases M1 
macrophage markers. This shift promotes wound closure 
and tissue healing, as demonstrated in studies involving 
diabetic mice.64 In summary, the interplay between IL-10 
and TGF-β signaling pathways highlights the reparative 
functions of M2 macrophages, positioning them as 
essential players in managing fibrosis and promoting 
tissue regeneration.

Other signaling pathways that underscore the role of M2 
macrophages in promoting tissue repair and modulating 
inflammation include phosphoinositide 3-kinase (P13K)/ 
protein kinase B (AKT), which is activated by IL-4 and IL-3 
receptors on M2 macrophages. This activation supports 
cell survival and enhances anti-inflammatory activities, 
thereby facilitating wound healing and liver regeneration. 
Notably, the PI3K/AKT pathway plays a crucial role 
during inflammation by converting microglia from a pro-
inflammatory M1 phenotype to an anti-inflammatory M2 
phenotype. This transition results in increased expression 
of anti-inflammatory cytokines such as IL-1 receptor 
antagonist (IL-1ra), IL-10, and interferon-beta, while 
simultaneously decreasing levels of pro-inflammatory 
cytokines like IL-1, TNF-α, IL-6, IL-8, and C-X-C 
motif chemokine ligand (CXCL1).65,66 Furthermore, M2 
macrophages promote apoptosis, contributing to the 
resolution of inflammation.67 Another critical pathway 
is the signaling pathway of peroxisome proliferator-
activated receptor gamma (PPAR-γ). Activation of 
PPAR-γ in M2 macrophages increases the expression of 
anti-inflammatory genes, reduces inflammation, reduces 
overall inflammation, and mitigates fat accumulation 
in the liver, which collectively helps to decrease fibrosis. 
This pathway also plays a protective role by preventing 
excessive activation of profibrotic pathways such as 
TGF-β.68 In addition, the IL-4/IL-13/ signaling pathway 
through signal transducer and activator of transcription 
6 (STAT6) promotes the expression of reparative and 
anti-inflammatory genes in M2 macrophages. This 
signaling cascade not only reduces inflammation but 
also aids in liver tissue repair.69 Finally, the nuclear 
factor kappa-light-enhancer of activated B cells (NF-kB) 
signaling pathway activated by M2 macrophages can help 
suppress chronic inflammation while supporting tissue 
resolution and repair processes.70,71 In summary, these 
diverse signaling pathways illustrate the multifaceted 

roles of M2 macrophages in regulating inflammation 
and promoting tissue regeneration, highlighting their 
potential as therapeutic targets in managing LF and other 
related conditions.

Challenges of M2 macrophage-based immunotherapy
Despite promising potential of M2 macrophage-based 
immunotherapy for the treatment of LF, it also presents 
several notable challenges that must be addressed for 
successful clinical application. One major concern is the 
context-dependent behavior of macrophages; studies 
using animal models have shown that macrophages can 
have different, or even opposite, roles depending on the 
experimental conditions. Therefore, careful consideration 
of factors such as dosage, timing of intervention, and 
macrophage subsets to be targeted according to the stage 
of the disease. In addition, the mouse models employed 
in this research did not completely reflect the complex 
disease conditions in humans. These models typically 
reflect only specific pathological processes induced by 
certain stimuli, thereby neglecting the multifaceted nature 
of LF as it occurs in human patients.72

Different factors contributing to LF also cause different 
pathogenesis and pathological processes, thus requiring 
different effects of macrophage polarization. For example, 
studies have shown that M1 macrophages and their 
associated pro-inflammatory cytokines are significantly 
increased in LF induced by CCl4. In contrast, M2 
macrophage polarization appears to be more dominant in 
LF resulting from schistosomiasis infection.73 In addition, 
M2 macrophages are known for their profibrotic properties, 
producing growth factors and ECM components that 
contribute to scar tissue formation. They also secrete 
proteases that help break down ECM, thereby aiding 
tissue repair. However, if these processes are not tightly 
regulated, they can potentially promote tumorigenesis.74 
This highlights the complexity of macrophage roles in 
LF and underscores the need for tailored therapeutic 
strategies that consider the specific context of macrophage 
polarization in different etiologies of LF.

The response to M2 macrophage-based immunotherapy 
can also vary among individuals, depending on factors 
such as genetics, existing health conditions, and the extent 
of fibrosis.75 In some cases, LF may show resistance to M2 
macrophage therapy, mainly if significant pathological 
changes have already occurred, potentially limiting the 
long-term effectiveness of this approach. Furthermore, 
although M2 macrophages can inhibit the activation of 
HSCs, improper regulation can lead to excessive collagen 
production, exacerbating fibrosis rather than alleviating 
it. Directing M2 macrophages to specific areas of the liver 
affected by fibrosis is also challenging, as without proper 
targeting, M2 macrophages may not be able to reach the 
desired location or even cause side effects. Furthermore, 
an imbalance in the M1/M2 ratio leads to HSCs activation 
and LF development.61 This complexity underscores the 
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need for a nuanced understanding of individual patient 
profiles and the intricate dynamics of macrophage 
polarization in order to optimize the effectiveness of M2 
macrophage-based therapies for LF.

Overall, M2 macrophage-based immunotherapy 
approaches offer great potential in treating LF; however, the 
efficacy of these therapies highly relies on addressing the 
challenges that exist. Further research and development of 
more sophisticated technologies are needed to guarantee 
these therapies in clinical applications.

Future perspective and research direction
The potential of utilizing M2 macrophage-based 
immunotherapy in treating LF shows promise. However, 
various areas need further investigation to optimize 
therapeutic techniques and enhance patient outcomes. 
Subsequently, investigations should prioritize the 
subsequent critical avenues:

Optimisation of targeting strategies
Non-targeted medicines can impact on several cell 
types, including M1 macrophages, other immune cells, 
and healthy cells in different organs. This broad impact 
can result in undesirable side effects, such as systemic 
inflammation or compromised immunological function. 
For example, anti-fibrotic drugs such as interferon-gamma 
(IFN-γ), angiotensin II, and interleukin 10 have shown 
promising results in preclinical trials; however, they have 
not translated successfully into clinical settings.76 The 
primary reason for these failures is the lack of specific 
delivery mechanisms in their formulations. While IFN-γ 
possesses recognized anti-fibrotic properties, it also 
induces pro-inflammatory responses in macrophages, 
complicating its therapeutic use.77 One promising avenue 
to tackle this issue is the application of nanomedicine. 
Nanomedicines enable precise control over drug 
distribution, preventing premature drug breakdown 
and improving drug absorption. Nanoparticles have 
the potential to enhance biocompatibility and stability 
of therapeutic agents in comparison to traditional 
medications. This targeted approach could optimize the 
efficacy of anti-fibrotic therapies while mitigating adverse 
effects, paving the way for more successful treatment 
strategies in LF management. 

Furthermore, nanoparticles can be precisely designed 
to provide focused therapeutic benefits.78 To improve the 
specificity, active targeting approaches can be implemented 
by modifying the surface of the nanoparticles to establish 
a selective affinity for recognizing and interacting 
with specific receptors on the surface of macrophages, 
including mannose, dectin-1, Tuftsin peptide, folate 
receptor beta (FR-b), and phosphatidylserine.79 A study 
by Singh et al has successfully engineered mannosylated 
albumin nanoparticles (MANPs) that specifically target 
CD206 + macrophages in pulmonary fibrosis.80 By 
delivering small-interfering RNAs (siRNA) via the MANPs 

pathway, these nanoparticles can silence the TGF-β1 
signal. This approach is also found in a study by Tran et 
al. M2 polarization was successfully induced by delivering 
microRNA-223 (miR-223) using special nanoparticles.81 
These nanoparticles are designed to target CD44 and 
carry miR-223 duplexes or plasmid DNA that expresses 
miR-223, which helps repolarize the macrophages. 

The therapeutic mechanisms of nanoparticles and 
liposomes in treating LFs involve several pathways, 
including inhibition of TGF-β production, reduction of 
collagen deposition, and modulation of M2 macrophage 
function. For example, silica nanoparticles have 
demonstrated the ability to inhibit collagen production 
and reduce LF in preclinical models. In contrast, gold 
nanoparticles have been used to deliver siRNA to the 
liver and reduce LF. Lipid-coated nanoparticles have 
been designed to target M2 macrophages through 
specific receptors, facilitating the delivery of therapeutic 
compounds to the disease. Polymeric nanoparticles have 
also been employed to transport therapeutic agents to 
the liver and have shown promising results in reducing 
LF.82 Besides that, other nanoparticles like silicon dioxide 
(SiO2 NPs) and titanium dioxide (TiO2 NPs) are proven to 
inhibit the expression of collagen type 1 by upregulating 
matrix metalloproteinases (MMPs) and downregulating 
tissue inhibitors of metalloproteins (TIMPs).83 

Another modified engineered liposome was also found 
to successfully target C-X-C motif chemokine receptor 4 
(CXCR4), which is overexpressed in idiopathic pulmonary 
and LF, leading to the polarization of M1/M2 macrophages. 
The liposomes were modified to carry an anti-fibrotic 
medicine with a particular MMP-2-responsive peptide 
called E5. This modified liposome will find and stick to 
cells with too much C-X-C motif chemokine ligand 4 
(CXCL4). The excessive MMP-2 in fibrosis will further 
help the liposome break apart and release the medicine 
exactly where it is needed.8 The proportion of M1 and M2 
in the fibrosis site is nearly equal after the induction of this 
liposome, resulting in improved antifibrotic effects.

Mechanistic insight and identification of novel 
biomarkers
Developing a more comprehensive understanding of 
the mechanism and novel biomarkers that affect M2 
macrophages is essential to optimize therapeutic targets. 
Given the intricate function of M2 macrophages, it is 
essential to comprehend their unique inflammatory 
processes in the context of LF. The research should identify 
how these pathways can be manipulated to optimize 
the therapeutic potential of M2 macrophages while 
simultaneously reducing the likelihood of profibrotic or 
tumorigenic effects.

Originally, M2 macrophages were marked by their 
response to IL-4 or IL-13, as these signals are typically 
associated with the immune system’s reaction to parasites 
or fungi, triggering a Th2 immune response. However, 
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these markers can also appear when other types of immune 
cells are exposed to IL-4 or IL-13, indicating that they are 
not exclusive to M2 macrophages.84 Depending on what 
triggers the activation, Mantovani and colleagues divided 
M2 macrophages into different subtypes: M2a (activated 
by IL-4 and IL-13) and M2c (activated by IL-10 and GCs), 
each having slightly different roles and markers.85 Mosser 
also added the term M2b, which refers to activation 
induced by Fc receptors, immune complexes, and LPS.86 
This activation contributes to the diverse functions of 
M2 macrophages, including fighting viruses, producing 
neurotransmitters and hormones, and generating lipid 
mediators, which play roles in inflammation and other 
processes. 

Future research should focus on discovering new 
biomarkers for M2 macrophages and their involvement in 
LF, beyond the extensively studied markers. In addition to 
the markers mentioned above, several others are recognized 
as indicators of M2 macrophages, namely arginase-1 and 
CD206. Arginase-1 can reduce arginine availability for 
nitric oxide (NO) production and suppress inflammatory 
responses. However, in chronic inflammatory settings 
like fibrosis, arginase-1 will be activated by TGF-β and 
promote collagen production, contributing to disease 
progression rather than the resolution of inflammation.87 
Thus, arginase-1 can be used as a biomarker for diagnosing 
and monitoring of fibrotic diseases. 

Another prognostic indicator that can be used to 
diagnosis acute fibrosis is CD206. CD206 is a valid marker 
for M2 because of its strong correlation with CD163, 
a marker usually used to identify the M2 phenotype.88 
CD163 and CD206 are important receptors on the surface 
of macrophages. In normal conditions, macrophages 
release these receptors into the bloodstream to manage 
the inflammatory response. During ALF, the upregulation 
of these markers may correlate with the severity of 
liver disease help predict the risk of complications and 
monitor ALF.89

Researchers can better utilize these markers in clinical 
settings by identifying and validating more novel 
biomarkers. These can enhance their utility in predicting 
disease outcomes and tailoring treatments, ultimately 
improving patient management.

Macrophage plasticity 
Macrophage plasticity is the ability of macrophages to 
change from one phenotype to another based on the 
microenvironmental signals they receive.90 Macrophage 
plasticity, especially the ability of M2 macrophages to 
switch between different activation states, is both a 
challenge and an opportunity in treating of LF.72 Studies 
have shown that macrophages are capable of altering their 
phenotype in reaction to various environmental signals, 
such as cytokines, growth factors, and ECM components. 
This response is vital in various pathological contexts, 
including cancer and chronic inflammatory diseases, 

where macrophages can play a role in either promoting or 
suppressing the disease process, depending on the signal. 
This suggests that macrophages have high adaptability 
and can change dynamic phenotypes in response to 
environmental changes.91

Cytokines have long been recognized for their ability 
to modulate macrophage responses, with early studies 
highlighting this relationship.92 It has been hypothesized 
that macrophages exhibit inflammatory or anti-
inflammatory functions that corresponding to Th1- 
and Th2-driven immune responses, respectively.85,93,94 
M2 macrophages acquire anti-inflammatory and pro-
regenerative characteristics when are stimulated by 
cytokines such as IL-4 or IL-13. Specifically, IL-4 induces 
a distinct macrophage phenotype marked by increased 
mannose receptor expression and functions are markedly 
different from those triggered by IFN-γ.95 However, 
studies indicates that when macrophages are treated with 
IL-4 before LPS stimulation, they exhibit heightened 
inflammatory activity, including increased level of TNF-α, 
IL-12, and upregulation of enzymes like inducible nitric 
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), 
while simultaneously suppressing anti-inflammatory 
responses such as IL-10 production.91 This indicates 
that, although IL-4 is typically associated with M2 
polarization, it may enhance macrophage inflammatory 
responses under certain conditions, such as subsequent 
LPS exposure. Moreover, if M2 macrophages are exposed 
to pro-inflammatory signals like IFN-γ or LPS, they can 
revert to an M1 phenotype, potentially exacerbating 
fibrosis. The inflammatory and cytotoxic functions of 
macrophages are further intensified by IFN-γ, supporting 
a two-signal model for activating of macrophage 
inflammatory responses.92 

Other studies have attempted to understand the 
mechanisms underlying macrophage plasticity to develop 
more effective therapeutic strategies. One approach is 
targeting specific signaling pathways to maintain the 
M2 phenotype. The IL-10/STAT3 signaling pathway has 
been identified as key to maintaining the M2 phenotype. 
The IL-10/STAT3 signaling pathway is vital in resolving 
inflammation and maintaining of homeostasis,96 by 
inhibition pro-inflammatory pathways such as NF-κB. In 
pathological contexts such as cancer or chronic infectious 
diseases, IL-10/STAT3 can reduce excessive inflammation 
on the one hand. However, it can also support a tolerogenic 
or immunosuppressive environment that may favor tumor 
growth or pathogen development. Other studies have 
highlighted the importance of macrophage metabolism 
in determining its phenotype. M2 macrophages 
use oxidative metabolism, which relies on oxidative 
phosphorylation (OXPHOS), while M1 macrophages rely 
more on glycolysis. M2 macrophages tend to increase 
fatty acid oxidation (FAO) and the activity of enzymes 
that support oxidative phosphorylation, allowing them 
to support the healing and tissue repair process.97,98 
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Therefore, manipulation of metabolic pathways may be 
one strategy to prevent the shift of M2 macrophages to a 
pro-inflammatory phenotype.

Future research should focus on controlling macrophage 
plasticity to ensure that M2 macrophages remain in a 
therapeutic state and do not revert to a pro-inflammatory 
or profibrotic phenotype. Future research should focus on 
developing tools that dynamically monitor and control the 
phenotypic status of macrophages in the body. This could 
involve developing strategies to stabilize the M2 phenotype 
or selectively reprogram macrophages in the body. Future 
strategies may include developing gene therapies or small 
molecules that can stabilize the M2 phenotype, or even 
clustered regularly interspaced short palindromic repeats 
(CRISPR)-based technologies to modify gene expression 
in M2 macrophages to keep them in a therapeutic state. 
Another approach is to create a microenvironment that 
supports M2 macrophage activity and suppresses signals 
that could trigger the transition to a pro-inflammatory or 
profibrotic phenotype.

Combination therapies
To enhance the effectiveness of M2 macrophage-based 
immunotherapy, future studies should prioritize the 
development of combination therapies. By combining 
the regulation of M2 macrophages with current anti-
fibrotic medications or other immunological strategies, it 
is anticipated that a more powerful synergistic effect can 
be achieved, leading to enhanced therapeutic outcomes 
for patients. A successful approach is to integrate M2 
macrophage therapy with antifibrotic medications, 
decreasing fibrotic tissue and enhancing tissue 
regeneration more efficiently.99

Furthermore, due to the frequent occurrence of chronic 
inflammation before LF, the utilization of M2 macrophage 
therapy in conjunction with anti-inflammatory 
substances like toll-like receptors (TLR)-2 or NF-κB 
inhibitors holds great potential as a viable strategy.100 This 
combination can inhibit inflammation while enhancing 
the regenerative function of M2 macrophages, potentially 
decreasing fibrosis and enhancing the overall health of the 
liver. This method enables a concurrent decrease in the 
inflammatory process and expedited and more effective 
tissue regeneration.

In addition, the research is also focused on combination 
therapy involving M2 macrophages and stem cells, 
particularly mesenchymal stem cells (MSCs). MSCs 
can regulate the immune system and facilitate tissue 
regeneration. By combining these two therapies, it 
is anticipated that there will be a synergistic impact 
on lowering fibrosis by promoting the regeneration 
of hepatocytes and reducing the synthesis of ECM.101 
Furthermore, the utilization of PPAR-γ agonists, which 
have demonstrated the ability to shift macrophages towards 
the M2 phenotype, can augment the antifibrotic impact 
of this treatment,102 making it a more comprehensive and 

efficacious approach in the management of LF.

Conclusion
LF results from prolonged inflammatory responses to 
factors such as viral infections, excessive alcohol intake, 
and metabolic disorders. M2 macrophages, with their 
anti-inflammatory and reparative properties, present a 
promising target for immunotherapy in LF. They have 
a key function in modulating key signaling pathways, 
which suppress pro-inflammatory responses and 
facilitate tissue regeneration. However, challenges such as 
individual variability in treatment response and the risk of 
exacerbating fibrosis necessitate careful regulation of M2 
macrophage activity. To optimize the safety and efficacy 
of M2 macrophage-based therapies, further research 
and technological advancements are essential. Overall, 
targeting M2 macrophages offers a novel approach to 
improving outcomes in LF treatment. 
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