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Abstract

Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics
that render them suitable for biomedical uses. This paper reviews recent advancements in
carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful
modification for biomedical uses, particularly in the passivation of drugs and chemicals on
their surfaces. This review article examines information from 2021-2024 regarding carbon-
based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano
horns, nanodiamonds, quantum dots, and graphene oxide. Initially, a total of 5,612 relevant
data points from various databases such as PubMed, ScienceDirect, and Web of Science
were analyzed. After eliminating duplicates, nearly 3,905 data points were found to meet the
inclusion criteria for this study, with the latest research indicating that 1,791 (45.8%) of these
databases pertained to graphene. Carbon nanotubes accounted for approximately 928 (25.14%)
databases, while graphene oxide represented around 837 (21.43%) databases, placing them in
second and third positions, respectively. Nanohorns and fullerene were found in very minor
quantities, specifically 34 (0.87%) and 06 (0.15%) in the database. CBNs, have the capacity
to revolutionize biological medicine by improving regenerative treatments, personalized
healthcare, and therapeutic outcomes. They are utilized in scaffolding, drug delivery, tissue
engineering, bioimaging, and additional fields. Nonetheless, successful integration necessitates

tackling scale and regulatory limitations.

Introduction

In light of their special physicochemical qualities, carbon-
based nanomaterials (CBNs) have become attractive
options for a variety of biological applications.! The
potential applications of these materials—which include
graphene, fullerenes, nano-diamonds, nanohorns,
nanotubes, quantum dots, carbon onions, and carbon
nanotubes (CNTs) (Figure 1) -in tissue engineering, drug
delivery, biosensing, imaging, and cancer treatment have
attracted a lot of interest.? For targeted drug delivery and
therapeutic applications, their large surface area, superior
biocompatibility, and changeable surface chemistry make
them perfect.’ Furthermore, because of their extraordinary
optical qualities, CBNs have demonstrated considerable
promise in diagnostic imaging methods, including
photoacoustic imaging and fluorescence imaging.* These
Nanomaterials have enormous potential to transform
biomedicine and enhance patient outcomes with more
study and development.® The application of CBNs to
improve the effectiveness of cancer treatment has been the

subject of recent research.® These Nanomaterials’ special
qualities allow them to act as carriers for chemotherapeutic
medications, minimizing systemic side effects and
enabling targeted delivery to tumor sites. Furthermore,
Graphene and CNTs have demonstrated promise in
photothermal therapy, which uses the materials’ ability to
absorb light to specifically kill cancer cells.” Furthermore,
the potential of CBNs in biosensing and diagnostic
applications has been a subject of intense research.?
Their ability to interact with biological molecules and
cells has led to developments in biosensors for detecting
biomarkers associated with various diseases, including
cancer, cardiovascular disorders, and infectious diseases.’
Furthermore, CBNs may be functionalized with targeting
ligands and imaging agents such as peptides (RGD
peptides), antibodies (anti-HER2), and aptamers (DNA
aptamers), due to their changeable surface chemistry,
which makes them useful for targeted treatment and
molecular imaging.' To fully realize the promise of CBNs
in biomedical applications, multidisciplinary teams in the
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Health impact of carbon-based nanomaterials

field of nanomedicine must continue their research and
collaborate." These Nanomaterials have the potential to
greatly care and customized medicine via progress in their
synthesis, characterization, and comprehension of their
interactions within biological systems.'

Synthesis of carbon-based nanomaterials

At present, emerging technology can easily regulate
environmental pollution, energy generation, agricultural
development, and food production, resolving global
concerns and paving the way for a bright future for
humanity.”® In response to this, scientists have discovered
a wide range of methods for synthesizing CBNs, which
they then employ in emerging technologies." One of
those CBNs called “fullerene” is employed extensively in
most scientific fields, although scientists are still unsure
of how it is made.”” Though popular methods for this
goal include the vaporization of graphite electrodes,
hydrocarbon pyrolysis, and laser ablation.'® Fullerenes
are separated from soot using solvents, and the product

Fullerene  Carbon nanotubes
Graphene Quantum dots

is processed using liquid or column chromatography."”
Electrochemical or solution ozonolysis processes are now
being introduced by emerging technologies for synthesis
purposes.'® (Figure 2).

“Carbon onion” is another CBNs that is created using a
variety of methods, including chemical vapor deposition
(CVD), electron irradiation, and nanodiamond
transformation.’” Acetylene, boron trichloride, and
ammonia constitute some of the precursors that are broken
down by CVD, which uses hydrogen ions as a carrier
molecule.?” An alternative method of creating CNOs is to
build a graphitic outer shell by heating a diamond core to
1700 °Cin a vacuum.? The diamond phase transforms into
a facetted graphitic structure as the temperature rises.”
The type of precursor and the conditions of synthesis have
a significant impact on the structure of carbon onions; all
carbon onions have a multi-shell architecture similar to
that of fullerenes.

Another type of CBN known as “nanodiamond,” which
is a classification of diamond, is created by top-downly

Carbon onions Nanodiamonds

Figure 1. Structures of various carbon based nonmaterial (CNMs)
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Figure 2. Synthesis procedure of carbon-based nanomaterials
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breaking up bulk diamonds.” The bulk diamonds and
these nanodiamonds have similar mechanical, optical,
thermal, electrical, and biocompatibility properties.”
Nevertheless, a number of studies have recently used CVD
techniques to create nanodiamonds.”® CBNs, known as
carbon quantum dots (CQDs), may be synthesized using
many procedures, including electrochemical, top-down,
arc discharge, laser ablation, combustion, and microwave
pyrolysis.®*”  Additionally, those nanomaterials are
cut utilizing top-down methods, and electrochemical
exfoliation and arc discharge are used to create cheap
carbon electrodes.?*” The discovery of CNTs, another
kind of CBN, in fullerenes led to the development of
several methods for producing single and multiwalled
CNTs.”® Other methods include laser ablation, which
uses Nd: YAG and CO, lasers to melt graphite targets,
and CVD, which breaks down hydrocarbon precursors in
the presence of a metallic catalyst. Graphene is a carbon-
based material that is synthesized using a single sheet
structure and two distinct ways called bottom-up and top-
down approaches.® Among the methods employed in the
bottom-up process include CVD, plasma-enhanced CVD,
and epitaxial growth on silicon carbide (SiC). In top-down
synthesis, superior graphite crystals are separated into
graphene sheets by mechanical or chemical means.*

Functionalization of carbon-based Nanomaterials
Researchers can easily functionalize CBNs with the
help of modern, advanced technologies by improving
their properties and making them more useful in many
fields, including the biomedical field.*® This will help
people and the next generation of health care facilities.*
As mentioned before, there are already a variety of
CBNs available, fullerenes being one of them. Typically,
there are three methods to functionalize fullerenes:
grafting hydroxyl groups, covalent functionalization,
and surface functionalization.? Surface functionalization
causes fullerene to become soluble in organic solvents
and water.’>” There are, however, two more types of
fullerene covalent functionalization: complexation with
a solubilizing agent and covalent fictionalization.” Strong
acids and high temperatures can be used to graft oxygen-
based functional groups—mainly hydroxyl groups—
onto fullerene surfaces. Due to their biocompatibility
and resistance to cell differentiation, development, and
proliferation, another carbon-based group of diamonds,
these minerals is frequently utilized for a variety of
purposes, such as sensing purposes for nanostructures,
mass  spectrometry,  chromatography, tribology,
electroanalysis, lubrication, creating fluorescent tags
for analyzing biological processes, locating microscopic
substances, and energy storage.'>*

CNTs, another form of nanomaterial based on carbon,
have undergone several functionalization’s. CNTs and
functional groups (Diels-Alder cycloaddition, carbene
and nitrene addition, chlorination, bromination,

azomethine ylides, and hydrogenation) form covalent
linkages to give acidic sites for attachments during the
covalent fictionalization process.* In spite of this, covalent
functionalization has the potential to break the aromatic
ring of CNTs and modify their electrical and mechanical
properties.*

While supramolecular complexation, adsorption, and
biomolecules preserve the non-covalent functionalization
of CNTs, their structural and electrical properties are
still preserved. In order to ascertain its properties and its
applications in electronics, biomaterials, sensing, energy,
and the environment, graphene—the most demanding
CBN—must undergo chemical fictionalization.”*** Zero-
gap graphene transforms into semiconductors for use in
biomaterials and electrical applications; it may also be
used as an electrode material to boost the efficiency of
electrocatalysis.*

Graphene oxide (GO) undergoes chemical
modifications by grafting, radical additions, electrophilic
substitution, and cycloaddition reactions in the case of
covalent fictionalization.”Organic compounds, quantum
dots, and polymers are used to functionalize GO.***
When non-covalent functionalization occurs, interactions
between counter molecules preserve the graphene’s linear
structure. Because of its properties, including its high
strength, flexibility, and reversible tensile elastic strain,
graphene is a useful material for sensors.*
Bioavailability = and carbon-based
Nanomaterials
Future generations might benefit greatly from the use of
CBNs in industries such as agriculture, food production,
food safety, nanomedicine, pharmacy, the drug industry,
and the biomedical area.”® Nevertheless, there’s also
evidence that CBNs have harmful effects, which may
be controversial for now a day.** Researchers found that
overexposure to CBNs create toxicity in the environment
as well as to human health.*

Experts have discovered that the physical characteristics
of CBNs, such as their length, size, shape, surface
functionalization, and impurities influence their toxicity
and bioavailability" (Figure 3). Research has shown
that longer CBNs are more cytotoxic than shorter ones,
decreasing cell viability and increasing ROS production.
On the other hand, the toxicity of CBNs is inversely
related to their size.*? Differently shaped carbon
nanoparticles have different dangerous properties.* While
both SWCNTs and MWCNTs exhibit significant harmful
effects at lower doses, SWCNTs are much more cytotoxic
than MWCNTs at the same concentration. Since GOs
differ from SWCNTs in their physical characteristics, they
pose a greater risk.”

The toxicity of carbon nanomaterials may be more
complex than their shape; for example, longer MWCNTs
are more lethal than spherical ones.* Carbon nanomaterial
toxicity is arranged in a broad sequence.”® When

toxicity  of
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Causes of
toxicity

mixture of various toxicological
effect of carbon based nanomaterials
causes ultimate cell death

Figure 3. Cause and effect of toxicity of carbon-based nanomaterials

nanoparticlesare surface functionalized, ithasa deleterious
effect on immune-mediated cells such as dendritic cells,
macrophages, and lymphocytes.* The production of
ROS, cellular autophagy, lysosomal damage, pyroptosis,
apoptosis connected to mitochondrial pathways and
scavenger receptors, and cellular necrosis are among the
underlying mechanisms of CBN§’ cytotoxicity (Figure 3).*
Fullerene, a CBN primarily found in aquatic invertebrate
animals, along with graphite, acts on a variety of target
cells in the human body, including mesenchymal cells,
especially dermal fibroblasts, HepG2, neuronal human
astrocytes, alveolar macrophages, and human monocyte-
derived macrophages.” This cytotoxicity results in the
release of lactate dehydrogenase, disruption of cellular
membranes and lipid peroxidation, decreased cell
viability, and apoptosis/necrosis.** Among carbon-based
nanotubes, it has been discovered that multiwalled carbon
nanotubes (MWCNTs) cause cellular toxicity, whereas
single-walled carbon nanotubes (SWCNTs) exhibit
cytotoxicity in a concentration-dependent way.* Research
has demonstrated that MWCNTs cause a considerable
reduction in cellular phagocytosis as well as apoptosis.*

Methodology

Search approach and data selection specifications
Several credible scientific search engines are employed
including Pub-Med was the primary database for the
searches, however we also searched like MEDLINE,
NDSL (National Digital Science Library) and was limited
to English-language papers published in peer-reviewed
journals or conference proceedings between 2021 and
2024 to gather information and conduct searches for
this review article. Recommendations for meta-analyses
are also employed, along with the suggested reporting
items for evaluation. These websites are used to gather
information for this study and references from pertinent

publications by utilizing the search criteria “carbon-based
nanoparticles,” “biomedical applications of graphene,
“biomedical application of fullerene,” “biomedical
application of carbon nanotubes,” “biomedical application
of nanohorns,” “biomedical application of nanodiamonds,”
“biomedical application of quantum dots,” and “biomedical
application of graphene oxide” Data screening was done
from the list of chosen studies.

Database search protocol and keywords

The study article’s search was conducted in a repeating
manner. The article’s introduction contains a number
of important phrases, including “Carbon nano horns,
“special chemicals,” “carbon dots,” “carbon,” “earth,
“treatment;” “nanomaterials,” “graphene,” and “biomedical
application” During future versions, the article’s title
was carefully examined to identify more optimal

» « »

keywords, such as “carbon,” “nanomaterials,” “biomedical
applications,” etc.

Data synthesis, extraction, and inclusion/exclusion
standards

The information was retrieved from a variety of scientific
articles that had been published in “English” in respectable
publications and scientific search engines during 2021
and 2024, which included 1. Studies that focused on the
biomedical applications of CBNs, including therapeutics,
diagnostics, and imaging. 2. Studies that reported on the
use of CBNs for biomedical applications, including in
vitro, in vivo, and clinical trials. 3. Studies that provided
sufficient detail on the synthesis, characterization, and
application of CBNs.

To fully meet the objectives, the main conclusions of the
information extraction, patterns, and trends are further
examined. The exclusion criteria were, 1. Studies that
did not focus on the biomedical applications of CBNs.
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2. Studies that did not report on the use of CBNs for
biomedical applications. 3. Studies that were published
outside the specified time frame or were not published in
English. 4. Studies that did not provide sufficient detail on
the synthesis, characterization, and application of CBNs.

The data presented here is made clearer and more
impactful by the use of charts, graphs, and other visual
components. In order to mitigate the potential for bias,
the reviewers reviewed this article. Reviewers utilized
methods like EndNote or manual screening to remove
duplicate articles from multiple databases, ensuring the
analysis was based on unique studies, enhancing the
accuracy and reliability of the findings.

The study outlined steps to manage duplicate data points,
including exclusion of duplicate studies, de-duplication of
extracted data points, and data aggregation. Sensitivity
analyses on some overlapping datasets also performed
to assess the robustness of the findings and established a
dataset hierarchy prioritizing comprehensive and up-to-
date ones to minimize the impact of overlapping data.

Results
Around 5612 relevant data were found for examination of
this article. From which 1707 data are found to be duplicate
and removed. The publications were screened and found
3905 data points using their title and abstracts. From which
around 817 data were found from PubMed database, 2403
data were found from ScienceDirect database, and 685
From Web of science database (Table 1). Among them
majority were removed for full filling exclusion criteria
and only few were found which meet inclusion criteria.
Bar graphs showing comparative study outcomes of
different CBNs and their biomedical applications from
various search engines (Figure 4). Graphene-based
nanomaterials were the most commonly used CBNs,
accounting for approximately 45.8% of the studies
reviewed. CNTs and graphene oxide were the second
and third most frequently used CBNs, representing
around 25.14% and 21.43% of the studies. Fullerenes and
nanohorns were less commonly used, but still showed
promise in specific biomedical applications. In the PubMed
database, graphene has the most studies in recent years,
followed by quantum dots and CNTs. PubMed found very
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little data regarding fullerene and nanohorns. According
to the ScienceDirect search engine, graphene likewise
exhibits very demanding research, with graphene oxide
and CNTs coming in second and third. The ScienceDirect
database contained no additional information about
fullerene’s use in biomedicine. Graphene also has a large
number of search results in the Web of Science database,
while other carbon nanomaterials have the fewest studies
in recent years.

Discussion

Biomedical applications of carbon-based Nanomaterials
In addition to their special qualities, CBNs specially CNTs
and graphene are materials with different properties and
advantages for therapeutic applications have drawn a lot
of interest in biological applications (Figure 5).°'These
materials have exceptional mechanical strength, great
electrical and thermal conductivity, and a vast surface
area.”” Examples of these materials are graphene,
fullerene, and CNTs.”® CNTs have a high aspect ratio,
excellent mechanical strength, and can be functionalized
for biocompatibility and specificity. Graphene has a
high surface area, excellent electrical conductivity, and
thermal properties. However, they have potential toxicity,
difficulty in uniform dispersion, and concerns about
long-term biocompatibility. Graphene has potential
toxicity due to high reactivity and oxidative stress, and
challenges in scaling production. Both materials have
potential applications in drug delivery, tissue engineering,
and biosensing. The choice between them depends on the

Table 1. Number of data sets of carbon-based nanomaterials from various
scientific search engines.

SL. eathoninased Scientific search engines
No. nanomaterials PubMed ScienceDirect Web of science
01 Graphene 404 787 600
02 Fullerene 05 00 01
03 Carbon nanotubes 172 745 11
04 Nanohorns 03 21 10
05 Nano diamonds 27 78 33
06 Quantum dots 140 06 25
07 Graphene oxide 66 766 05
766
140
20 Tgn o glls
Nanohorns ~ Nano Quantum  Graphene
diamonds dots oxide
4 5 6 7

m Scientific search engines ScienceDirect

Figure 4. Comparative study outcomes of different carbon-based nanomaterials and their biomedical applications from various search engines
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Figure 5. Biomedical application of carbon-based nanomaterials

specific application and addressing their limitations. CBNs
have demonstrated potential in improving the therapeutic
effectiveness of medication delivery.”***

Nonetheless CBNs offer potential for personalized
medicine by targeting specific genetic mutations or
profiles. By using targeted ligands that are aware of
particular biomarkers or receptors, these nanoparticles
can be functionalized. Applications include gene therapy,
cancer treatment, and precision medicine. Improved
therapeutic effectiveness, fewer adverse effects, and
individualized medication are among the advantages.
By developing customized therapies that cater to the
particular requirements and genetic characteristics of
each patient, researchers can improve the quality of
healthcare overall.

Effective medication loading and tailored distribution to
certain tissues or cells are made possible by the increased
surface area.’® Additionally, they are appropriate carriers
for a variety of pharmacological substances due to their
biocompatibility and capacity to cross cell membranes.
Additionally, carbon-based nanoparticles are essential to
biosensing technology.®

Their high electrical conductivity and large surface-to-
volume ratio enable the detection of biomolecules with
exceptional sensitivity.** This capability has profound
implications for diagnostic tools, environmental
monitoring, and medical devices. In the realm of medical
imaging, CBNs have emerged as contrast agents due to
their unique optical and magnetic properties.” These
materials hold promise for improved resolution and
specificity in imaging modalities, including magnetic
resonance imaging and fluorescence imaging.*

Moreover, in tissue engineering, CBNs contribute to
the development of scaffolds with enhanced mechanical
properties and bioactivity, fostering tissue regeneration
and repair.”® The multifaceted applications of CBNs in

biomedicine underscore their potential to revolutionize
healthcare technologies and contribute to advancements
in therapeutic interventions and diagnostics.®

Biomolecules may be detected with remarkable
sensitivity thanks to their enormous surface-to-volume
ratio and strong electrical conductivity.® This feature has
significant effects on medical equipment, environmental
monitoring systems, and diagnostic instruments.® Because
of their special optical and magnetic characteristics,
CBNs have become popular contrast agents in the field
of medical imaging.> Magnetic resonance imaging and
fluorescence imaging are two imaging modalities where
these materials show potential for better resolution and
specificity.®

With different thresholds according on the kind, cell
line, and exposure time, CNMs can cause cytotoxicity,
genotoxicity, inflammation, and oxidative stress. They may
also cause oxidative stress and inflammatory reactions,
which can harm tissue. In order to create safer and more
efficient nanomaterials for biomedical applications, it can
be helpful to comprehend their toxicity and biological
implications.

Furthermore, CBNs support tissue regeneration and
repair in tissue engineering by helping to create scaffolds
with improved mechanical and biological qualities.* The
potential of CBNs to transform healthcare technology
and enhance therapeutic treatments and diagnostics is
highlighted by their many uses in biomedicine.*®

Drug delivery

Nanomaterials based on carbon have demonstrated
enormous promise for transforming medication
delivery methods. Their special qualities make them
ideal for improving the medicines’ targeted delivery
and effectiveness in a range of biological applications.®
Pharmaceutical substances may be efficiently loaded onto
CBNs due to their large surface area.®” This characteristic
makes it possible to encapsulate and provide a wide variety
of medications, including proteins, nucleic acids, and
tiny compounds.®® Furthermore, the broad surface area
makes it easier for targeting ligands to adhere, allowing
for targeted distribution to sick tissues or cells with the
least amount of systemic adverse effects.” CBNs have
the potential to improve the effectiveness of therapies by
providing accurate control over pharmacokinetics and
drug release kinetics.”

With the prolonged and targeted drug administration
provided by this controlled release mechanism, treatment
results are enhanced, dosage frequency is decreased, and
side effects are minimized.”” The biocompatibility and cell
membrane penetration of carbon-based nanoparticles
constitute two further noteworthy advantages.”” These
characteristics improve the administration of medicines,
even those with low solubility or restricted cellular
absorption, intracellularly by facilitating the passage of
pharmaceuticals through biological barriers and into
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target cells.”” Moreover, combination treatment can target
complicated disorders because of the adaptability of
CBNs, which enable the co-delivery of many medications
or therapeutic agents.” The capacity to create customized
medication delivery systems based on genetic and
molecular profiles to meet the demands of individual
patients offers great promise for personalized medicine
such as targeted cancer theraphy.”

Therefore, the use of CBNs in drug delivery is a novel
strategy for improving therapeutic treatments.”® CBNs
have shown promise in treating diseases like cancer. CNTs
can target cancer cells, deliver chemotherapeutic agents,
and reduce side effects. Graphene oxide nanoparticles
can target tumors, use photothermal therapy, and
deliver therapeutics to specific cells or tissues. Carbon
nanodots can be conjugated with targeting molecules and
used for imaging and therapy. Precision medicine and
individualized drug delivery tactics will rely heavily on
these nanomaterials because of their capacity to increase
therapeutic effectiveness, facilitate targeted distribution,
and optimize drug loading.”” Researchers can develop
targeted drug delivery systems to improve treatment
outcomes and reduce side effects.

Biosensing

CBNs have attracted a lot of attention in the field of
biosensing because of their many uses in the highly
sensitive and selective biomolecule detection and
quantification processes.” Their special qualities, such
as their vast surface area, high electrical conductivity,
and biocompatibility, have made them useful parts of
biosensing technologies.” The creation of electrochemical
biosensors is one of the main uses of CBNs in biosensing.*
These biosensors identify and measure biological analytes
by taking advantage of the electrical characteristics of
carbon nanomaterials like graphene and CNTs.* These
nanomaterials’ high electrical conductivity facilitates
quick electron transfer, which makes it possible to
detect biomolecules—such as proteins, DNA, and tiny
molecules—selectively and sensitively.*!

Moreover, CBNs are essential to optical biosensing
systemsbecause theyusetheirspecial optical characteristics
to identify biomolecules.®? For instance, graphene’s
remarkable optical transparency makes it possible to
create biosensors without labels.®* Furthermore, carbon
nanomaterials’ surface plasmon resonance capabilities
allow for the real-time observation of biomolecular
interactions, which makes them useful instruments for
fields like drug development and medical diagnostics.®
The development of sophisticated biomedical diagnostic
instruments is greatly encouraged by the use of CBNs in
biosensing.** Due to their high surface-to-volume ratio
and biocompatibility, they may be able to help with early
illness diagnosis and monitoring by enabling the sensitive
detection of disease biomarkers.*

Furthermore, by offering quick and precise diagnostic

capabilities, the use of these nanomaterials in point-of-
care devices has the potential to completely transform
the healthcare industry, especially in environments
with limited resources.”” CBNs are used in biosensing
technologies for environmental monitoring, in addition to
biomedical applications.® They are useful for monitoring
the quality of water and air, agricultural pollutants, and
the general health of the environment because of their
sensitivity to changes in the environment and their
capacity to identify particular pollutants or biomolecules.®
Biosensing innovation has enormous promise as long
as research on CBNs continues to progress.” With far-
reaching implications for healthcare, environmental
sustainability, and biotechnology, the outlook for using
CBNs in biosensing appears promising.”’ Examples of
these include the development of wearable biosensors
for continuous health monitoring and the integration
of nanomaterial-based biosensing platforms in smart
medical devices.*?

Sensing implants

An intriguing new area in biomedical engineering is
the use of CBNs in sensing implants, which opens up a
variety of options for sophisticated diagnosis, real-time
monitoring, and therapeutic treatments. Because of
their remarkable mechanical qualities, flexibility, and
biocompatibility, CBNs—such as graphene and CNTs—
make them excellent choices for implanted sensors that
track biomechanical parameters within the body.”” These
sensors offer unparalleled potential to comprehend
musculoskeletal dynamics and optimize rehabilitation
procedures for injury recovery.”® They can give insightful
information on joint movements, muscle contractions,
and bone stresses.”* Moreover, carbon-based nanoparticles
are used in implantable devices for biochemical sensing,
which allows the identification and measurement of
certain biomolecules in the body.”

Implantable sensors that include graphene or CNTs
allow for real-time monitoring of metabolites, hormones,
and disease biomarkers.””> This allows for the early
identification of physiological imbalances and the prompt
administration of medicinal therapies. CBNs optical
and magnetic characteristics offer previously unheard-
of possibilities for adding imaging capabilities to sensor
implants.”® Implantable devices have the potential to
provide high-resolution imaging of tissues and organs
through the utilization of carbon nanomaterials’ distinct
optical characteristics.” This can provide valuable
information on the course of diseases and physiological
processes.”® To further improve the diagnostic potential
of sensing implants, the magnetic characteristics of
these nanoparticles may be used for targeted imaging
and monitoring inside certain anatomical areas.”® High-
fidelity cerebral activity recording and smooth brain-to-
machine transmission are two areas in which CBNs have
great promise for use in neural sensing and brain-machine
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interfaces.” Researchers and clinicians can learn more
about brain circuits and develop novel treatment strategies
for neurological illnesses as well as developments in
neuroprosthetics by employing carbon nanomaterials
in implanted neural electrodes.' To guarantee the
translational potential of these technologies, regulatory
and safety concerns must be addressed as the use of CBNs
in sensing implants develops.®

Rigorous evaluation of the biocompatibility, long-
term stability, and potential immunological responses to
CBNs is essential for their safe and effective integration
into implantable devices, emphasizing the importance
of comprehensive preclinical studies and regulatory
oversight.'”" Thus, the integration of CBNs in sensing
implants represents a paradigm shift in biomedical sensing
and diagnostics, presenting opportunities for personalized
medicine through vaccine development, real-time health
monitoring, and transformative interventions in patient
care.”” The continued exploration of these applications
holds immense promise for the future of healthcare and
biomedical engineering.**?

Scientists find out that for CBNs to be safely and
effectively integrated into implantable devices, a thorough
assessment of their biocompatibility, long-term stability,
and potential immunological responses is necessary.'”
This emphasizes the significance of thorough preclinical
studies and regulatory oversight.'” The incorporation
of CBNs into sensing implants, therefore, signifies a
paradigm change in biomedical sensing and diagnostics
and offers prospects for real-time health monitoring,
tailored treatment, and revolutionary patient care
interventions.®® Future research into these applications
has enormous potential for the fields of biomedical
engineering and healthcare.

Antimicrobial applications

The numerous beneficial characteristics of CBNs present a
great deal of promise for the advancement of antimicrobial
applications in a range of fields, including environmental
remediation and healthcare.!”® These nanomaterials
provide fresh approaches to thwarting drug-resistant
organisms, averting infections, and improving cleaning
procedures, making them attractive weapons in the
battle against microbiological threats. Because of their
exceptional antibacterial activity, CBNs—such as graphene
and CNTs—are excellent choices for creating antimicrobial
surfaces and coatings.'® These nanoparticles may be used
to generate self-sanitizing materials that efficiently prevent
the development and spread of bacteria, viruses, and
fungus by adding them to polymers or surface coatings.'””
These antimicrobial surfaces have a great deal of potential
for use in a variety of settings, such as public infrastructure,
food packaging, medical equipment, and healthcare
facilities."® They can also help reduce the spread of
infectious illnesses and maintain public health.'® Because
of the distinct physicochemical characteristics of CBNs,

antimicrobial drugs with improved effectiveness and
tailored action may be designed and created.'” Through
processes including membrane rupture, oxidative stress
induction, and interference with microbial adherence,
functionalized CNTs and graphene derivatives can display
strong antibacterial capabilities.""® These antimicrobial
agents based on nanomaterials have the potential to be
more effective than traditional antimicrobial agents due
to their lower potential for resistance development.'
They may be applied to the treatment of infectious
illnesses, as well as for sterilizing and the creation of
new therapeutic modalities.'”* The prospective uses of
CBNs in photothermal and photodynamic treatment for
antibacterial purposes have attracted a lot of attention.'”®
By taking advantage of the photothermal characteristics
of nanomaterials, such as CNTs and graphene oxide, it is
possible to cause localized heating in microbial cells, which
results in thermal damage and microbial elimination.'"

Furthermore, these nanomaterials’ photosensitizing
properties allow for the production of reactive oxygen
species in response to light, which facilitates the targeted
photodynamic inactivation of pathogens.'”* Precision
antimicrobial treatments with possible answers for
localized infections and biofilm elimination are offered
by these promising techniques.'”” Beyond their use in
medicine, carbon-based nanoparticles support water
treatment and environmental cleanup initiatives by using
antibacterial agents."” CNTs and functionalized graphene
may be used to create antimicrobial filtration membranes
that effectively remove pollutants, pathogens, and
microbiological contaminants from water sources.''>'®
Additionally, the targeted inactivation of microbiological
agents in air and water made possible by the introduction
of nanoparticles into environmental remediation
technologies helps to protect the environment and prevent
waterborne illnesses."¢

In order to reduce possible dangers, it is critical
to address regulatory issues and carry out thorough
safety evaluations as the use of CBNs in antimicrobial
applications grows."” To guarantee safe deployment and
prevent unforeseen consequences, a thorough assessment
of the environmental impact, biocompatibility, and
long-term toxicity of antimicrobial products based
on nanomaterials is required."® Furthermore, the
establishment of strong frameworks for the appropriate
development and application of these cutting-edge
antimicrobial technologies depends on proactive
collaboration with regulatory bodies and stakeholders.'?
As a result, investigating CBNs for antimicrobial
applications is essential to tackling the changing problems
that microbiological threats in healthcare, environmental
sustainability, and public health bring.'*

Innovative antimicrobial techniques may be created
to battle infectious illnesses, reduce microbial pollution,
and expand the paradigm of antimicrobial therapies by
utilizing the varied properties of these nanomaterials.'*
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The potential for CBNs to have revolutionary effects on
antimicrobial applications is growing as research in this
area advances, signaling the beginning of a new age of
sophisticated antimicrobial technologies with far-reaching
effects on the health and welfare of people everywhere.'*

Treatment and diagnosis

Recent years have seen the rise of CBNs as potent
diagnostic instruments, providing special benefits for
the sensitive and targeted identification of pathogens,
disease-related compounds, and biomarkers.'* These
nanomaterials’ remarkable qualities—such as their large
surface area, adjustable surface chemistry, and remarkable
electrical and optical properties—make them attractive
options for next-generation diagnostic platforms.'*
CBNs, including graphene and CNTs, have been used to
create very sensitive biosensors that can identify certain
proteins with remarkable accuracy.'” Target analytes
may be selectively captured and quantitatively measured
by functionalizing these nanomaterials with biological
recognition components like enzymes, antibodies, or DNA
probes.'? This opens the door to the possibility of quick
and precise point-of-care testing.!¥” These biosensors
show promise for a variety of diagnostic uses, such as
early illness screening, cancer biomarker profiling, and
infectious disease detection, enabling prompt and focused
therapies for better patient outcomes.'” CBNs can be used
as image contrast agents for enhanced diagnostic imaging
modalities because of their distinct optical and magnetic
characteristics.'*®

High-contrast viewing of biological structures and
disease-related characteristics is made possible by the
remarkable imaging capabilities of functionalized carbon
nanomaterials, such as carbon dots and graphene quantum
dots.!® By providing opportunities for enhanced tissue-
specific targeting, improved imaging resolution, and
multi-modal imaging applications, these nanomaterial-
based contrast agents help to advance the development of
more precise and insightful diagnostic imaging methods
for a wide range of medical conditions.”*® Novel methods
for DNA and RNA sensing have been presented by the use
of CBNs in genomic analysis and nucleic acid detection.!
The development of nanomaterial-based systems that
can capture and amplify nucleic acid sequences opens
the door to the sensitive and targeted identification of
infectious pathogens, disease-associated genetic markers,
and genetic alterations.'*

These platforms provide insights into genetic
predispositions, disease development, and treatment
responses for individualized patient care.'”” They have
enormous promise for use in molecular diagnostics,
genomics research, and Tailored drug delivery systems."*
The creation of theragnostic platforms—wherein CBNs
play dual functions as diagnostic agents and therapeutic
carriers—is a result of the confluence of diagnostics
and therapies."**Precise diagnosis and targeted therapy

administration may be accomplished on a single platform
by integrating diagnostic features, such as target-specitfic
identification and imaging, with nanomaterial-based
drug delivery systems.® With the ability to simultaneously
analyze patients’ medical histories and provide specific
therapeutic treatments, these therapeutic techniques have
great potential to advance personalized medicine and
provide more efficient, individualized treatment plans.'*

Comparative studies have shown that both CNTs and
graphene exhibit excellent photothermal conversion
efficiency, with graphene generally demonstrating
higher efficiency due to its higher surface area and
better optical absorption properties.’** However, CNTs
have shown improved selectivity for cancer cells due to
their ability to target specific cell surface receptors.'*
In terms of hyperthermia-based treatments, graphene-
based photothermal therapy has been shown to induce
significant cancer cell death in vitro and in vivo, while
CNT-based therapy has demonstrated promising results
in targeted cancer therapy."” Further research is needed to
fully elucidate the comparative advantages and limitations
of CNTs and graphene in photothermal therapy, but these
preliminary findings suggest that both materials hold
significant promise for cancer treatment

In order to ensure the safe and efficient integration of
these technologies into clinical practice, it is crucial to
address regulatory issues and translational obstacles as
the potential for CBNs in diagnostic applications grows."*
Securing regulatory clearance and clinical translation of
nanomaterial-based diagnostic technologies requires a
thorough assessment of their pharmacokinetics, safety
profiles, and biocompatibility.'* Additionally, in order to
create strong frameworks for the ethical development and
application of CBNs in diagnostic tools and open the door
for their widespread use in healthcare settings, proactive
engagement with regulatory bodies, clinical stakeholders,
and industry partners is essential.®

Tissue engineering
At the forefront of regenerative medicine is tissue
engineering, which wuses synthetic and biological
components to replace or repair damaged tissues and
organs."® CBNs have demonstrated great promise and
potential in this sector for a variety of applications,
providing special qualities that have the ability to
completely transform tissue engineering techniques.'*!
Making scaffolds is one of the main uses of CBNs in tissue
engineering.'* Because of their remarkable mechanical
strength, surface area, and conductivity, CNTs, graphene,
and carbon nanofibers are excellent choices for building
scaffolds that resemble the extracellular matrix of natural
tissue."? In the end, these scaffolds can help tissue
regeneration by giving cells the structural support they
need for adhesion, proliferation, and differentiation.'**

To further improve cellular responses and tissue
integration, CBNs may be functionalized with bioactive
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compounds, growth factors, and signaling signals
thanks to their variable surface chemistry.'"* In tissue
engineering applications, carbon-based nanoparticles
have also shown promise as vehicles for targeted and
regulated drug delivery.'*® Drug-loaded carbon-based
carriers can be engineered to offer continuous release of
bioactive compounds, growth factors, and therapeutic
agents at the site of tissue regeneration by using the
large surface area and special physicochemical features
of nanomaterials.*® By encouraging localized cellular
activity and tissue regeneration and reducing off-target
effects and systemic exposure, this tailored delivery
strategy can maximize the regenerative potential of tissue
engineering constructions.'"” CBNs have important roles
in drug delivery and scaffold construction, but they also
provide useful tools for bioimaging and tissue growth and
development monitoring.'® Carbon dots and graphene
quantum dots, two examples of nanomaterial-based
contrast agents, can be used to visualize and evaluate tissue
shape, vascularization, and cellular activity in real time
during non-invasive imaging of created tissues.'* The
capacity to image is essential for assessing the efficacy of
tissue regeneration techniques and refining the design of
engineered structures to ensure their seamless integration
into the host tissue."® CBNs’ remarkable mechanical
and electrical conductivity have important ramifications
for tissue engineering applications, especially when it
comes to synthetic cardiac, neurological, and muscular
tissues.”” The incorporation of carbon nanomaterials
into tissue engineering structures can aid in the creation
of mechanically and electrically robust scaffolds, thereby
offering a platform for the functional integration and
maturation of specialized tissues that are dependent
on mechanical coupling and electrical signaling for
appropriate operation.'” Since CBNs have the potential
to improve tissue engineering approaches, it is critical
to address translational issues and regulatory concerns
in order to guarantee the safe and efficient integration of
these materials into clinical practice."*

For regulatory approval and clinical translation, a
thorough assessment of the biocompatibility, long-term
safety, and tissue-specific effects of constructs using
nanomaterials is essential.® Furthermore, in order to
create strong frameworks for the ethical development and
clinical application of CBNsin tissue engineering and open
the door for their revolutionary influence on regenerative
medicine and patient care, proactive engagement with
regulatory bodies, physicians, and industry partners is
imperative.”> On Table 2 shows biomedical applications,
advantages and limitations of various CBNs.'*"%*

Conclusion

CBN applications in biological medicine, particularly
within tissue engineering and diagnostics, have the
potential to significantly improve clinical outcomes,
regenerative medicine, and personalized medicine.

Theragnostic platforms that use CBNs can provide targeted
therapeutic treatments and diagnostic evaluation at the
same time, resulting in better patient care and healthcare
initiatives. Furthermore, CBNs are useful for bioimaging,
scaffold construction, drug administration, and improving
the mechanical and electrical characteristics of tissue
engineering constructions due to their special qualities.
However, it is crucial to address regulatory issues,
carry out thorough assessments of biocompatibility and
safety, and actively interact with regulatory bodies and
clinical stakeholders to guarantee the safe and successful
integration of these technologies into clinical practice.
CBN-based biomedicine faces several challenges,
including toxicity and biocompatibility, scalability and
reproducibility, targeting and delivery, and regulatory
frameworks. The long-term effects of CBNs on human
health and the environment are not fully understood, and
large-scale production remains a significant challenge.
Efficient targeting and delivery of CBNs to specific cells
or tissues are crucial for effective therapy. Regulatory
frameworks are needed to ensure safe and responsible
development. Unanswered questions include mechanisms
of action, pharmacokinetics and pharmacodynamics,
immunogenicity and immune response, and clinical
translation. While CBNs have shown promise in various
biomedical applications, more research is needed to fully
realize their potential and address these challenges.

Future Perspectives

CBNs, such as graphene, CNTs, fullerene, and CQDs, are
emerging as versatile tools in biomedical research. Their
unique physical, chemical, and biological properties
enable applications in diagnostics, therapeutics, drug
delivery, and tissue engineering. Advancing surface
chemistry techniques can help tailor CBNs to specific
biological environments, improving biocompatibility
and minimizing toxicity. The integration of CBNs
with artificial intelligence can revolutionize real-time
diagnostics and personalized medicine. The development
of multifunctional CBNs for simultaneously targeting
disease pathways and delivering therapeutic agents is a
promising frontier. Addressing the potential long-term
toxicity and environmental impact of CBNs through
rigorous evaluation and sustainable synthesis is critical.
While promising, the clinical adoption of CBNs remains
a challenge due to regulatory hurdles and scalability
issues. Collaboration between interdisciplinary teams
can expedite the path to clinical applications. Combining
CBNs with other nanomaterials, such as metallic
nanoparticles or polymeric nanocomposites, may unlock
novel biomedical functionalities.

The review article discusses the limitations of CBNs
research, including its scope, bias, methodological
variability, lack of standardization, and the lack of
understanding of emerging trends. It suggests that further
research is needed to understand the mechanisms of action
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Table 2. Biomedical applications, Advantages, & Limitations of various Carbon-based nanomaterials

. Biomedical s
Carbon nanomaterials . Advantages Limitations Ref.
applications
Graphene Graphene Even though graphene is extremely promising, its practical
W \ Drug deliver Provide several significant advantages, application is limited, mainly because of production
eneg delivery, including extraordinary strength, lightness,  issues, expense, and the requirement for changes to
Eiosensin Y flexibility, and great electrical and thermal improve its functionality. The costly and intricate process
tissue & conductivity. These qualities make it of producing high-quality graphene, the requirement to  '%
engineering. and appropriate for a variety of industries, solve its lack of a band gap (which makes it challenging
bi(?ima in 5 including energy storage, electronics, to turn off as an electronic device), and the possibility of
8ing: construction, and healthcare. toxicity and biocompatibility problems are some of these
drawbacks.
CNTs have various advantaces because Carbon nanotubes (CNTs) have numerous drawbacks,
P rag despite their promise features. These include the difficulty
of their unique characteristics. They . .
. . ; of large-scale, cost-effective production, the challenges of
. are lightweight, robust, and highly : L . - . L
Drug delivery, . . . managing chirality for consistent semiconducting activity,
. conductive, making them ideal for Do - .
gene delivery, . TR . the possibility of toxicity, and worries about the long-term
. ; a variety of applications including . .
biosensing, ) ) ) impacts. Furthermore, present manufacturing methods 154
“\ electronics, composite materials, and - .
cancer treatment . . ) . frequently produce combinations of metallic and
: biomedical devices. Their large surface . . - ) .
and Imaging . R semiconducting CNTs, necessitating effective separation
area also improves their ability to absorb > )

“‘. z technology. . procedures for dependable electronics. Scaling up CNTs
and transport chemicals, and they are . o . .
biocompatible, which broadens their for practical applications can lessen their extraordinary

ompatible, wht strength because their qualities are often most noticeable
application in medical sectors. R
at the tiny level.
Fullerenes have multiple advantages due to
Drug deliver their unique features, including the ability
Fullerene hotgod nam?(,: to act as antioxidants, be good electron
P Y acceptors, and have the potential for use . o _— )
therapy for . A ) ) Fullerene's use is limited by characteristics such as its
in a variety of medical and electronic . . e T
cancer and N P : . inherent insolubility in water, inclination to agglomerate,
) . applications. They are utilized in medicine . L S LoD 155,156
antibacterial . high cost, and vulnerability to deterioration in light and .
delivery, cancer treatment, and even _ o A Lo
purposes, . . . oxygen. These restrictions limit potential uses in biology
. cosmetic products, thanks to their capacity
biosensors, . . . and energy storage.
and tissue to interact with DNA, proteins, and cells.
engineerin Furthermore, their spherical shape and
5 & unique features make them valuable for
lubricants and energy storage applications.
Carbon nano horns
Biosensing, Carbon nanohorns (CNHs) have various
bioimaging, advantages over other CBNs, such as CNTs. - . . .
} ging vantages over omel su CNHs have restrictions resulting from their synthesis
tissue These include high yield, purity, and the

engineering, and
cancer therapy
are all examples
of targeted
medication
delivery.

° Biomedical

S imaging,
drug delivery,

biosensing,

and cancer

£ treatment.

Drug delivery,
tissue
engineering,
bioimaging,
and sensing
technologies.

capacity to synthesis without using metal
catalysts. CNHs also have outstanding
features such as a large specific surface area,
great chemical stability, strong mechanical
strength, and superior conductivity, making
them useful in a variety of applications.

Carbon quantum dots (CQDs) have multiple
applications due to their unique qualities,
which include biocompatibility, low
toxicity, tunable fluorescence, and ease

of manufacturing. They are a promising
nanomaterial for applications such as
bioimaging, biosensing, medication delivery,
and environmental cleanup.

Carbon onions, also known as carbon nano-
onions (CNOs), provide various benefits
due to their distinct structure and features.
These include excellent conductivity,
mechanical strength, and the ability to store
energy. They are also biocompatible and
can be employed in different applications,
including energy storage and biomedicine.

and inherent features, including their tendency to
congregate and hydrophobicity. These difficulties include
functionalization, dispersion, and separation of individual
nanohorns. Furthermore, their hydrophobic properties
need surface modification for broader uses.

While CQDs have advantages over standard
semiconductor quantum dots, their widespread usage is
constrained by a number of issues, including toxicity, low
biocompeatibility, high cost, and poor chemical inertness.
Furthermore, CQDs can display low solubility in aqueous
solutions, requiring sophisticated surface modifications
for specific applications.

Carbon onions, while intriguing, have limitations in
applicability. They mostly tend to aggregate, lowering
their dispersibility and limiting their applicability in a
variety of applications. Furthermore, while having high
conductivity and vast surface area for applications such
as supercapacitors, their energy density and specific
capacitance can be relatively low when compared to
other materials.

159

in various biomedical applications, large-scale clinical
trials to evaluate safety and efficacy, interdisciplinary
collaborations  between researchers from diverse
disciplines, the development of standardized protocols for
synthesis, characterization, and application, and exploring
new applications like regenerative medicine, gene therapy,
and personalized medicine. The rapidly evolving nature

of the field may also limit the capture of emerging trends
and future directions. Further research is needed to fully
understand the potential of CBNs in biomedicine through
standardized toxicity assessments to ensure safety and
efficacy. Scalable synthesis methods are being explored
to improve production efficiency and reduce costs, while
targeted functionalization strategies are being developed
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to enhance specificity.
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