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Introduction
Ischemic heart disease (IHD) is a global leading cause 
of human mortality and disability in the clinical setting.1 
Typically, myocardial infarction (MI) occurs following 
partial or complete occlusion of a coronary artery leading 
to massive cardiomyocyte damage, inflammation, and 
subsequent fibrotic changes.2 Notably, the contraction 
of fibroblasts and collagen fibers at the healing site can 
contribute to the thinning of the left ventricle (LV). Over 
time, the reduction of ejection fraction (EF) and lethal 
arrhythmias in an ischemic heart can be life-threatening.3 
Currently, percutaneous coronary intervention (PCI) 
and coronary artery bypass grafting (CABG) are clinical 
modalities for the restoration of blood and reduction of 
cardiomyocyte injury.4 Unfortunately, these approaches are 
not fully effective, and the development and application of 
de novo therapeutic strategies are highly recommended.5

In recent decades, the discovery and application 
of stem cells in various pathological conditions have 
revolutionized regenerative medicine.6 It has been shown 
that stem cells can promote the healing of ischemic 

myocardium via the release of cytokines, growth factors, 
and direct differentiation into cardiomyocytes.6,7 Besides, 
these cells can accelerate the regeneration of injured 
myocardium via juxtacrine interaction and production of 
pro-angiogenesis factors.8,9 

According to recent data, it has been confirmed that 
endothelial progenitor cells (EPCs) are valid cell sources 
for restoring dysfunctional endothelium via various 
reparative functions, especially promoting angiogenesis 
and vasculogenesis.10 In this regard, EPCs alone or in 
combination with other stem cells or mature cells have 
been used in different studies to accelerate regenerative 
outcomes and circumvent limitations associated with 
the administration of single stem cell type alone.11,12 
Proteomic analyses have proved the existence of common 
specific surface molecules such as CD133, CD34, 
vascular endothelial growth factor-2 (VEGFR-2), Tie-2, 
and Sca-1 between EPCs and hematopoietic stem cells.13 
Following various pathologies and hypoxic conditions, 
EPCs are recruited from the bone marrow niche, the 
primary storage site in adults, to the circulation system.14 
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Abstract
Purpose: Myocardial infarction (MI), the leading cause of human mortality, is induced by a 
sudden interruption of blood supply. Among various stem cell types, endothelial progenitor cells 
(EPCs) are novel and valid cell sources for the restoration of vascularization in the ischemic tissue. 
The present study aimed to evaluate the regenerative properties of EPCs in rodent models of MI.
Methods: A comprehensive systematic search was implemented in Cochrane Library, Embase, 
PubMed, Scopus, and Web of Science databases without language limitation in Sep 2024. Of 
the 67 papers pooled, 42 met the inclusion criteria and were subjected to multiple analyses.
Results: Compared to the MI group, the overall effect size was confirmed in the groups receiving 
EPC with enhanced angiogenesis (SMD: 2.02, CI 95%: 1.51-2.54, P < 0.00001; I2: 82%), reduced 
fibrosis (SMD: -1.48; 95% CI−2.15, -0.81; P < 0.0001; I2: 88%), improved ejection fraction (EF; 
SMD: 1.72; 95% CI−1.21, 2.23; P < 0.00001; I2: 87%), and fractional shortening (FS; SMD: 1.58; 
95% CI − 1.13, 2.03; P < 0.00001; I2: 82%). Data confirmed significant improvements in the 
cardiac tissue parameters after intramyocardial injection of EPCs.
Conclusion: These data showed that EPC transplantation is an alternative therapy to ameliorate 
ischemic myocardium in rodents via the stimulation of angiogenesis, reduction of fibrosis, and 
improvement of fractional shortening and ejection fraction. 
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Circulating EPCs migrate toward the injury sites in a 
cytokine gradient manner where they gradually lose 
their stemness features (CD133↓, and CD34↓) and 
mature into endothelial cells (ECs; CD31↑ and vWF↑).15 
Besides differentiation capacity, EPCs release several 
proangiogenesis factors (IGF-1, VEGF, HGF, FGF-2, 
etc.) to expedite the formation of new blood vessels in 
the hypoxic areas.16 Data have indicated that the injection 
of EPCs in several animal models of MI can improve 
the healing of myocardium through the stimulation of 
angiogenesis, regulation of inflammation, and control of 
extracellular matrix (ECM) remodeling.12 

In the present systematic review, the application of 
EPCs in the rodent model of MI and their potential in the 
restoration of injured myocardium mainly via angiogenesis 
was explored. To the best of our knowledge, there are few 
reports related to systematic review and metanalysis of 
EPCs in humans and different animal models of MI. Most 
of the studies have investigated the diagnostic properties 
of EPCs under certain pathological conditions such as 
ischemic diseases in humans or there are several reposts 
related to separate applications of EPCs in certain MI 
models in animals.17-19 Although the reparative properties 
of EPCs have been proved in different MI animal models, 
it is imperative that data from various experiments with 
similar objectives be combined and assessed to minimize 
the possible bias and make logic in the interpretation of 
the obtained data.20 In the last decades, rodents have been 
widely used for different experiments related to the MI 
model due to inherent advantages like small body mass and 
easy handling pre- and post-MI induction with minimal 
space and resources. Besides, researchers can have access 
to various rodents with similar genetic characteristics 
which facilitates high repeatability.21 It seems that data 
from this study can provide invaluable data about the 
eligibility of EPC application in the alleviation of MI in 
the clinical setting. 

Material and Methods
The current systematic review and meta-analysis were 
conducted based on the PRISMA 2020 statement 
guideline. The used protocol was registered in the 
PROSPERO database (CRD42024571517).

Search strategy
A comprehensive systematic search was implemented 
in Cochrane Library, Embase, PubMed, Scopus, and 
Web of Science databases without the limitations of 
language and date in Sep 2024. After the completion of 
the systematic search, collected articles, experiments, 
and contacted authors were carefully monitored and 
validated for subsequent evaluations. The abstracts from 
the international congresses were also monitored. The 
strategy used in this study is shown in Table S1 (see 
Supplementary file 1).

Study design considerations
All preclinical studies associated with the application of 
EPCs in rodent models of MI, including mice and rats were 
reviewed. Rodents with experimentally induced MI in any 
age in both genders were included. EPCs transplantation 
in human counterparts, and other species (i.e., rabbits, 
porcine, canines, etc.), and in vitro experiments were 
excluded from the present analysis. Data related to the 
administration of EPCs alone, but not in combination 
with other stem cell types, were collected. Also, studies 
related to the use of EPC exosomes in rodent models of 
MI were not included. Articles with no access to their 
full texts were not considered. In Table 1, inclusion and 
exclusion criteria are outlined.

The primary outcome indicators were “angiogenesis”, 
and “infarct size”. The secondary outcome indicators 
were “LVEF”, and “fractional shortening (FS)”. For the 
meta-analysis, the data containing at least one of the 
outcomes measured between 1- and 8 weeks post-EPC 
transplantation were used. If studies contained more than 
one set of data for primary or secondary outcome analysis, 
the selection was done based on the more relevant and 
common data. 

Study selection
Once the databases were searched for the relevant 
papers, all collected citations were uploaded to EndNote 
18 software with duplicate studies being deleted. Two 
separate reviewers blindly screened the titles and abstracts 
to ensure the eligibility of the studies in terms of the 
inclusion and exclusion criteria. Any discrepancy was re-

Table 1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

•	 Preclinical studies about EPCs as therapy on 
rodent models (mice and rats), with cardiac 
infarction in any age or gender

•	 Endothelial progenitor cells
•	 Studies including the combination therapy 

with EPC such as scaffold, miRNA, growth 
factors, and other type of stem cells

•	 Studies with CD34 + cells transplantation
•	 All experimental studies (preclinical)

•	 Not an animal study
•	 Other animal study rather than rodents
•	 Not a myocardial infarction model
•	 Clinical studies on humans
•	 In vitro studies
•	 Other types of stem cells
•	 Studies with CD133 + cells transplantation
•	 Studies including combination therapy with EPC and other types of stem cells
•	 Not transplantation of EPC and just mobilization investigation
•	 EPCs-derived exosome transplantation
•	 Other study type
•	 In vitro studies
•	 Studies without any access to the full text, or studies in the other languages, and retracted studies
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checked again by a third blind reviewer.

Data collection
The collected data from multiple search databases were 
organized using PRISMA guidelines. For this purpose, 
articles were entered into an Excel spreadsheet. The process 
was continued by an independent review of the selected 
abstracts by the same reviewers. Any disagreements were 
critically assessed until a precise decision was made and the 
opinion of a third reviewer was obtained if it was required. 

Evaluation of methodological quality
Using the modified CAMARADES checklist, two 
independent reviewers monitored the methodological 
validity of the quantitative publications selected for 
retrieval before their inclusion in the systematic review. 
Again, any disagreements were resolved through 
consultation with a third reviewer.

Statistical analysis
The results of the selected data were analyzed using 
RevMan 5.4.1. Data are presented as mean ± SD with a 
95% confidence interval (CI). Statistical heterogeneity 

was analyzed using the I2 value and the chi-square test. In 
this study, P < 0.05 and I2 > 50% were considered statistical 
heterogeneity. Fixed and mixed models were used for low 
and high heterogeneity in the parameters analysis. The 
subgroup analysis was performed if needed. Publication 
bias was assessed using funnel plots and more formally 
with both Begg and Mazumdar’s rank correlation test 
(Kendall’s tau) and Egger’s regression test. Begg’s test 
assesses the correlation between the effect estimates and 
their variances, while Egger’s test examines the relationship 
between the effect estimates and their standard errors. 
A P value of less than 0.05 was indicative of statistically 
significant publication bias.

Results
Description of studies and risk of bias
The flow chart for data selection and handling is presented 
in Figure 1. Here, a modified CAMARADES quality 
checklist was used to assess the collected experiments. Of 
all peer-reviewed articles, 67 declared compliances with 
animal welfare regulations. It is worth mentioning that 
random allocation to different groups was detected in 28 
studies and 42 experiments expressed a conflict-of-interest 

Figure 1. PRISMA diagram of the review process for the meta-analysis



EPCs and cardiac tissue regeneration

Advanced Pharmaceutical Bulletin. 2025;15(2) 271

statement. Furthermore, 6 articles had blinded induction 
of MI in the rodent models and 30 studies benefitted 
from both animal exclusion criteria and blind outcome 
assessment based on our evaluation. In the selected articles, 
no study declared the methodology related to sample 
size calculation (Figure 2). All articles were included for 
quality synthesis (Table S2; See Supplementary file 2).

Characteristics of studies
All the included studies from 2004 to 2021 with access to 
full text were selected. The systematic review focused on 
rodent models of MI consisting of rat (N = 37; 55.22%) 
and mouse (N = 30; 44.78%) models of MI (Table S2). Data 
indicated that a greater number of experiments were done 
on male rats/mice (N = 41; 61.19%), while 17 (25.37%) 
studies were conducted on female models Interestingly, in 
one study both genders were used. Rodents in 36 studies 
(53.73%) aged between 4 to 20 weeks. In 8 experiments 
(11.94%), the term “adult” was used to describe rodent 
age. In just one experiment (1.49%), “at least 9-week-
old” rodents were used for the MI model. Rats and mice 
subjected to MI models weighed 80-350, and 18-250 
grams, respectively. 58.21% of rats and mice were in 
healthy status (N = 39). Nude animals constituted 25.37% 
(N = 17) of the experiments. In 3 studies (4.48%), MI 
was inducted on diabetic models. Animals with severe 
combined immunodeficiency including NOD-SCID 
(N = 2; 2.99%), SCID (N = 1; 1.49%), and a combination 
of Nude/J or NOD-SCID (N = 1; 1.49%) were employed. 
Immunocompetent experimental models were 1.49% of 
collected studies (N = 1). In one study (1.49%), the models 
underwent ovariectomy together with splenectomy; 
while in one experiment just ovariectomy was conducted 
(1.49%). Experiments with both wild-type and IL-10 
knockout models comprised 1.49% (N = 1) of the studies. 
Protocols consisting direct left anterior descending 
coronary artery (LAD) ligation (N = 64; 95.52%); injection 

of vitamin D3 in high-fat diet-fed rodents (N = 1; 1.49%), 
intramyocardial administration of microembolism 
suspension following the occlusion of the ascending aorta 
(N = 1; 1.49%), and LAD ligation followed by reperfusion 
besides aorta cross-clamping (N = 1; 1.49%) were used to 
induce experimental MI models. Based on the analysis, 
MI (N = 63; 94.03%), progressive MI to cardiomyopathy 
(N = 1; 1.49%), MI with ischemic reperfusion (N = 1; 
1.49%), coronary artery microembolization (CME) (N = 1; 
1.49%), and ICM (ischemic cardiomyopathy model) 
(N = 1; 1.49%) were pathological conditions in rodent 
models. In the selected articles, EPCs were collected 
from different sources as follows; Bone marrow (N = 32; 
47.76%), peripheral blood (N = 19; 28.36%), umbilical 
cord blood (N = 11; 16.42%), direct cardio-puncture 
(N = 1; 1.49%), spleen (N = 1; 1.49%), dental pulp (N = 1; 
1.49%), and both peripheral blood and bone marrow 
(N = 1; 1.49%). EPCs were administrated as doses between 
2 × 102 and 2 × 107 in most of the experiments (N = 59; 
88.06%). In contrast to studies using single EPC injection, 
8 experiments (11.94%) were conducted based on 
multiple EPC administrations. Timing of EPC injection 
varied from immediate to delayed administration (until 
4 weeks) following MI induction. Different introduction 
approaches and terms were found in different studies 
such as intramyocardial injection (N = 44; 65.67%), 
intravenous injection (N = 9; 13.43%), intramyocardial 
injection and subsequent treatment with the construct 
(N = 3; 4.48%), simultaneous intramyocardial and 
intracoronary injections (N = 2; 2.99%), injection into 
the LV (N = 2; 2.99%), transepicardial injection (N = 1; 
1.49%), anterolateral LV surface suture (N = 1; 1.49%), 
implantation (N = 1; 1.49%), intracoronary injection 
(N = 1; 1.49%), percutaneously injection into LV (N = 1; 
1.49%), injection to the border of occluded region (N = 1; 
1.49%), and intramyocardial (intramuscular) or systemic 
injection (N = 1; 1.49%). 

Figure 2. Percentage of selected experiments for each item in the modified version of the CAMARADES (Collaborative Approach to Meta-Analysis and Review of 
Animal Data from Experimental Studies) quality checklist
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EPC transplantation effect on angiogenesis potential
A random-effects model was applied to find differences 
in angiogenesis potential in 32 eligible studies (Figure 3a; 
SMD: 2.02, 95%  CI: 1.51-2.54, P < 0.00001; I2: 82%). The 

subgroup analysis of EPC injection in different time points 
(1, 2, 3, 4, 6, and 8) indicated an improved angiogenesis 
potential after MI induction. Of note, these changes 
reached statistically significant levels post EPC injection 
after one week (SMD: 1.29, 95%  CI : 0.27-2.31, P = 0.01; 

Figure 3. Angiogenesis improvement based on the time of results assessment (a). Fibrosis improvement based on the time of results assessment (b). Ejection fraction 
improvement based on the time of results assessment (c). Fractional shortening improvement based on the time of results assessment (d)
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I2: 0%; N = 2), two weeks (SMD: 2.61, 95%  CI : 1.95-3.27, 
P < 0.00001; I2: 0%; N = 4), four (SMD: 1.72, 95%  CI : 1.19-
2.26, P < 0.00001; I2: 73%; N = 18), and eight weeks (SMD: 
5.98, 95%  CI : 0.25-11.70, P = 0.04; I2: 89%; N = 2). The 
other features were not statistically significant compared 
to the control group. 

EPC transplantation effect on myocardial fibrosis
Data confirmed the reduction of myocardial fibrosis in 28 
studies after EPC transplantation compared to the control 
group (SMD: -1.48; 95% CI − 2.15, -0.81; P < 0.0001; I2: 
88%). Subgroup analysis revealed significant differences 
of post-EPC administration after one week (SMD: -0.97; 
95% CI − 1.88, -0.07; P-0.04; I2: 0%; N = 2), two weeks 
(SMD: − 1.89; 95% CI − 2.93, -0.85; P = 0.0004; I2: 0%; 
N = 2), three weeks (SMD: − 1.73; 95% CI − 2.78, -0.68; 
P = 0.001; I2: 62%; N = 3), and four weeks (SMD: -2.05; 95% 
CI, − 3.00, -1.10; P < 0.0001; I2: 89%; N = 18) (Figure 3b).

EPC transplantation effect on cardiac ejection fraction
Random-effects model for differences in LVEF values is 
shown in Figure 3c. Data showed the efficiency of EPC 
transplantation in the improvement of LVEF after one 
week (SMD: 0.70; 95% CI − 0.14, 1.27; P = 0.01; I2: 52%; 
N = 8), two weeks (SMD: 3.98; 95% CI 1.36, 6.61; P = 0.003; 
I2: 95%; N = 6), three weeks (SMD: 1.08; 95% CI 0.60, 1.57; 
P < 0.0001; I2: 0%; N = 2), four weeks (SMD: 2.02; 95% CI 
1.18, 2.86; P < 0.00001; I2: 88%; N = 17), and eight weeks 
(SMD: 1.07; 95% CI 0.09, 2.04; P = 0.03; I2: 10%; N = 2) 
compared to the control group. Despite these results, two 
experiments reported the lack of statistically significant 
differences in LVEF parameters after 6 weeks post-EPC 
administration between the control and EPC groups. 

EPC transplantation effect on cardiac FS
Data obtained from a random-effects model indicated 
significant differences in cardiac FS following EPC 
therapy in rodent models of MI. To be specific, statistically 
significant differences were found in FS parameter after 
one week (SMD: 0.65; 95% CI 0.26, 1.03; P = 0.0010; I2: 6%; 
N = 7), two weeks (SMD: 2.65; 95% CI 0.87, 4.43; P = 0.004; 
I2: 91%; N = 6), four weeks (SMD: 1.91; 95% CI 1.18, 2.64; 
P < 0.00001; I2: 82%; N = 13), and eight weeks (SMD: 1.12; 
95% CI 0.52, 1.72; P = 0.0002; I2: 0%; N = 3) in EPC group 
as compared with the control group (Figure 3d).

Different EPC injection approaches
The regenerative efficacy of the EPC injection route was 
also assessed in rodent MI models. Intramyocardial route 
is the commonly used approach for the introduction of 
EPCs into the ischemic myocardium with the angiogenesis 
potential (SMD 1.91, 95% CI- 1.39-2.43, P < 0.00001, I2: 
80%; N = 27; Figure 4a); reduction of fibrosis (SMD -1.16, 
95% CI- -1.96, -0.36, P = 0.004, I2: 90%; N = 25; Figure 4b); 
improving EF (SMD:1.53, 95% CI- 0.92-2.15, P < 0.00001, 
I2: 86%; N = 24; Figure 4c), and FS values (SMD:1.58, 95% 

CI- 1.04-2.12, P < 0.00001, I2: 80%; N = 21; Figure 4d).
Various EPC doses
Based on EPC dose, studies were categorized into 5 groups 
as follows; up to 0.5 × 106, 0.5 to 1 × 106, 1 to 2 × 106, 2 to 
5 × 106, and more than 5 × 106 groups. The weighted 
applied dose to EPC transplantation is dose 1 (up to 
0.5 × 106), which demonstrated significant angiogenesis 
effects (SMD 7.16, 95% CI- 4.30-10.01, P < 0.00001, I2: 
92%; N = 12; Figure 5a), reduced fibrosis (SMD -10.31, 
95% CI- -18.72, -1.90, P = 0.02, I2: 98%; N = 15; Figure 5b), 
improved EF (SMD 11.33, 95% CI- 2.44-20.22, P = 0.01, I2: 
98%; N = 11; Figure 5c), and FS (SMD 5.58, 95% CI- 2.80-
8.37, P < 0.0001, I2: 92%; N = 11; Figure 5d) compared to 
the other doses. 

Various EPC sources
Based on our data, it was confirmed that bone marrow 
EPCs exerted significant angiogenesis effects (SMD 6.88, 
95% CI- 4.57-9.19, P < 0.00001, I2: 88%; N = 16; Figure 6a); 
reduced fibrosis (SMD -15.28, 95% CI- -20.40, -10.16, 
P < 0.00001, I2: 95%; N = 16; Figure 6b); improved EF 
(SMD:10.63, 95% CI- 7.53-13.73, P < 0.00001, I2: 86%; 
N = 17; Figure 6c), and FS (SMD: 6.93, 95% CI- 4.25-9.61, 
P < 0.00001, I2: 89%; N = 15; Figure 6d) in comparison 
with EPC types.

Publication bias
Four funnel plots were developed using RevMan 
5.4.1 to assess the publication bias among the selected 
experiments on each outcome (Figures 7a-d). For 
angiogenesis potential, Begg and Mazumdar’s test 
revealed Kendall’s tau of 0.546 (z = 4.395, P = 0.00001), 
and Egger’s regression test indicated a significant 
intercept of 5.79 (SE = 0.855, P = 0.00000). For anti-
fibrosis properties, Begg and Mazumdar’s test yielded 
Kendall’s tau of -0.576 (z = 4.211, P = 0.00003) with Egger’s 
regression of -4.62 (SE = 1.407, P = 0.00300). In terms 
of EF, Kendall’s tau of 0.522 (z = 4.481, P = 0.00001) was 
obtained by Begg and Mazumdar’s test, and a noteworthy 
intercept of 5.43 (SE = 1.011, P = 0.00001) was evaluated 
by Egger’s regression test. Finally, in the FS parameter, 
Begg and Mazumdar’s test demonstrated Kendall’s tau 
of 0.460 (z = 3.637, P = 0.00028) and an intercept of 4.27 
(SE = 1,113, P = 0.00062) after Egger’s regression test. 
These results suggest publication bias based on both the 
visual inspection of the funnel plot and the statistical tests 
in all outcomes.

Discussion 
MI is a debilitating pathological condition with a high rate 
of mortality in societies.89 Therapeutic strategies targeting 
the increase of vascularization and blood perfusion are 
beneficial to alleviate the adverse effects of MI. In this 
regard, in-time blood vessel formation can significantly 
reduce scar formation, abnormal LV remodeling, and 
massive cardiomyocyte damage.90 Emerging in vitro, 
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preclinical, and clinical data have indicated the potency of 
various stem cell types, especially EPCs, in the restoration 
of vascularization into the ischemic sites. It was suggested 
that both maturation into functional ECs, and the 
release of several proangiogenesis factors can expedite 
the process of healing in the ischemic sites.13 Of note, in 
vitro, ex vivo experiments, preclinical studies, and in silico 
analyses are required to evaluate the efficacy and safety of 

cells or drug candidates before application in the human 
counterpart.91 In this regard, the current systemic review 
and meta-analysis included preclinical experiments and 
aimed to explore the effectiveness of EPCs in rodent (rat 
and mouse) models of MI. Features such as angiogenesis, 
fibrosis, EF, and SF were monitored in MI animals 
following the administration of EPCs and compared to 
the control MI group. 

Figure 4. Angiogenesis improvement based on injection method (a). Fibrosis improvement based on injection method (b). Ejection fraction improvement based on 
injection method (c). Fractional shortening improvement based on injection method (d)
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 The present data noted that EPC transplantation can 
influence primary outcomes such as angiogenesis and 
fibrosis in MI groups receiving only cell-free phosphate-
buffered saline (PBS) or culture medium. Along with 
these changes, EPC administration led to improvements 
in cardiac function parameters, such as FS, and EF 
following MI induction. It has been assumed that several 
underlying molecular mechanisms are stimulated after 
the injection of EPCs into ischemic tissues.92 For example, 
EPCs are capable of ensuring cardiac tissue regeneration 

via the reduction of oxidative stress.93 Xue et al found that 
moderate-to-high doses of EPCs blunt the oxidative stress 
(8-iso-prostaglandin F2α↓, and SOD↑), and endoplasmic 
reticulum stress (GRP78 and CHOP) in a rat model of 
acute MI.94 Of course, prolonged exposure to insulting 
conditions contributes to the induction of oxidative stress 
in EPCs. Under such conditions, the function of EPCs 
and angiogenesis potential are fundamentally influenced. 
Hamed and co-workers found that diabetic circulating 
EPCs produce higher oxygen free radicals and exhibit 

Figure 5. Angiogenesis improvement based on EPC dose (a). Fibrosis improvement based on EPC dose (b). Ejection fraction improvement based on EPC dose (c). 
Fractional shortening improvement based on EPC dose (d)
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higher SOD, NADPH oxidase activity with reduced NO 
bioavailability compared to normal EPCs.95 Therefore, 
attention should be given to the selection of appropriate 
EPCs to achieve optimal regenerative outcomes under 
varying pathological conditions. 

It is hypothesized that direct physical contact between 

the EPCs and cardiac cells can stimulate several healing 
processes related to angiogenesis, ECM remodeling, and 
ventricular function.12 Multiple cell death modes such 
as cardiomyocyte apoptosis, excessive autophagic death, 
and necrosis are diminished following the administration 
of EPCs.96,97 Besides, EPCs exert anti-fibrotic properties 

Figure 6. Angiogenesis improvement based on EPC source (a). Fibrosis improvement based on EPC source (b). Ejection fraction improvement based on EPC source 
(c). Fractional shortening improvement based on EPC source (d)
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through the modulation of the TGF-β signaling pathway 
and regulation of Smads.98 Of course, the regenerative 
potential of EPCs is not limited to the above-mentioned 
mechanisms, and these cells can affect the bioactivity 
of multiple cardiac cells in a paracrine and juxtacrine 
manner.99 For instance, the EPC secretome contains 
various signaling factors affecting the function of ECs 
after injury. In response to the EPC paracrine activity, 
the angiogenesis potential of ECs is promoted while 
simultaneously inflammatory damage is reduced in 
ECs.100 One possible explanation for this effect is that 
the EPC-derived extracellular vesicles harbor high levels 
of pro-angiogenesis factors, such as VEGF and miR-183, 
which have the potential to activate the biological activity 
of ECs at the site of injury.101 More interestingly, the 
differentiation of cardiac cells increases toward endothelial 
lineage once certain signaling pathways such as Shh are 
stimulated.12 Abd El Aziz et al found that intramyocardial 
transplantation of 5 × 106 human cord blood EPCs 
improves cardiac tissue function in a canine model of 
infarction via localization in the vascular units and direct 
differentiation into troponin I + cardiomyocytes.102 The 
increase of endothelial nitric oxide synthetase and NO 
inside ECs is also associated with the paracrine activity 
of EPCs.103 Likewise, both superoxide dismutase and 
catalase stimulation and the expression of Bcl-2 increase 
EC resistance to oxidative stress juxtaposed to ischemic 
myocardium.12 Li et al found that shortly after ischemia 
induction in mice, donor EPCs can rapidly be recruited 
into the myocardium and elevate the local NO contents via 
the production of endothelial (eNOS) and inducible nitric 
oxide synthetase (iNOS).104 In line with this, Cristóvão 

and co-workers indicated lower CD34 + /KDR + EPC levels 
in ischemic cardiomyopathy patients compared to healthy 
counterparts, indicating fast and appropriate recruitment 
of EPCs in response to hypoxic/ischemic conditions.105

Data have confirmed that the direct juxtacrine activity of 
EPCs can promote neointima formation via the regulation 
of pericyte migration, secretion capacity, and phenotypic 
switching.106 Notably, EPCs can be genetically modified 
before transplantation to increase their regenerative 
potential.107 For instance, miR-214 expressing EPCs 
efficiently can control calcium hemostasis in stressed 
cardiomyocytes and enhance survival rate.12 Exosomal 
miR-1246 and miR-1290 driven EPCs upregulate ELF5 
and SP1 in cardiac fibroblasts and increase endothelial 
differentiation.108 

In addition to reducing fibrosis, the promotion of 
angiogenesis, activation of local cardiac progenitor 
cells, and increase in circulating progenitors within the 
infarcted myocardium collectively accelerate the healing 
process.109 Therefore, EPC administration appears to 
promote cardiac tissues through both endogenous and 
exogenous mechanisms.110 

Recent data affirm that the administration route 
influences the healing capacity and regenerative outcomes 
by affecting the on-target delivery, stem cell survival rate, 
and bioactivities.111 According to the search we conducted, 
the direct intramyocardial injection yields better healing 
properties compared to the other administration 
routes. The systemic administration could lead to the 
sequestration of EPCs in certain tissues such as the liver, 
spleen, and lungs due to massive vascular beds while 
direct injection into the target tissues provides a higher 

Figure 7. Funnel plot of standard error by the standard difference. Angiogenesis (a); Fibrosis (b); Ejection fraction (c); and Fractional shortening (d)
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delivery rate and retention time.112 Therefore, the homing 
of systemically administrated EPCs into the myocardium 
is less due to low retention time and certain anatomical 
features of cardiac tissue.113 Like intramyocardial injection, 
the intracoronary EPC infusion is considered to be widely 
administered. However, this modality requires higher cell 
volume compared to direct intramyocardial injection. It 
is worth remembering that the intracoronary route can 
increase the probability of cell clustering, and embolism, 
resulting in the occlusion of supporting blood vessels into 
the affected sites.114,115 Although intramyocardial injection 
ascertains higher cell delivery into the ischemic sites, this 
approach leads to the loss of a fraction of transplanted cells 
due to mechanical stress in solid organs such as cardiac 
tissue. Besides, iatrogenic inflammation and secondary 
tissue injuries can also occur when the cells are directly 
administrated into the myocardium.116 Like transepicardial 
and intracoronary routes, the intramyocardial injection 
essentially requires thoracotomies, which is an invasive 
surgical approach and cannot be performed when 
multiple cell doses are required.117 Despite the low 
targeting efficiency of EPC therapy via the systemic 
route, this approach is suitable for multiple-dose injection 
purposes.110,117 Using special advanced technologies such 
as ultrasound-guided percutaneous injection, the high cell 
doses can be directly delivered into different parts of LV 
in a relatively non-invasive manner. To standardize this 
approach with minimum side effects, various studies must 
be conducted 

The statistically significant results of Egger’s and Begg’s 
tests suggest the possibility of publication bias, implying 
that studies with statistically significant results may be 
more likely to be published than studies with null or 
negative findings. This could lead to an overestimation 
of the true effect size. Therefore, the results of this meta-
analysis should be interpreted with caution. Future 
research, including studies with negative or null findings, 
would be valuable to clarify the true effect of EPCs in the 
restoration of cardiac function following experimentally 
induced MI in rodents. 

This study has several limitations and future experiments 
should address them as much as possible. Even though 
this study made an effort to synthesize the available 
evidence rigorously, the high heterogeneity observed for 
most outcomes (I² > 80%) suggests considerable variability 
between the included studies. Despite the conduction of 
subgroup analyses, it was not feasible to fully explore the 
potential sources of this heterogeneity due to limitations 
in the reported data of the original publications. Due to 
these features, it was not possible to draw firm conclusions 
about the specific factors influencing the effectiveness 
of EPC therapy. In addition, a small sample size related 
to some parameters would make the interpretation 
problematic. These limitations highlight the necessity 
of further experiments to address the gaps and flaws. 
Specifically, future studies should report detailed data in 

a more standardized and comprehensive manner in terms 
of EPC source, dosage, administration route, experimental 
conditions, and relevant outcome measures.

The micro-, and microanatomy structure of cardiac 
tissue and its kinetics profoundly vary in rodents 
compared to their human counterparts. It is estimated 
that rodents have high heart rates and short lifespans. 
Meanwhile, the expression of genes and factors in cardiac 
cells can in part but not completely differ as compared 
to the other mammals.21 For instance, alpha isoform is 
the dominant type of myosin heavy chain in humans and 
large mammals atrium while this protein type is highly 
expressed in ventricles of mice and rats.21 The prominent 
difference in cardiac tissue kinetics and parameters can 
lead to relatively incomparable outcomes in rodents 
receiving stem cells and progenitors compared to large-
size mammal models and humans.118 EPCs display high 
similarity with other cell lineages such as hematopoietic 
stem cells, thus the precise characterization, isolation, 
and purification of EPCs seem problematic. Besides, 
EPCs constitute 0.01 to 0.0001% of total bone marrow 
mononuclear cells, and in vitro expansion using different 
growth factors and supporting ECM components are 
necessary to yield EPCs in high quantities.13,119 Regarding 
the limited number of EPCs in freshly collected samples, 
serial passages and prolonged culture time can contribute 
to the loss of EPC phenotype and functionality.120 
Although cryopreservation in part preserves the 
phenotype and biological activity, attention should be 
given to optimizing the cryopreservation protocols 
using suitable cryoprotectants to minimize the adverse 
effects of storage temperature.121 Based on the recent 
data, EPC type and maturation stage can influence the 
angiogenesis outcomes. Sieveking and co-workers found 
that later outgrowth EPCs can directly participate in the 
structure of vascular units better than that of early EPCs. 
It seems that early EPCs can promote the angiogenesis 
phenomenon indirectly via the release of angiogenesis 
factors at the site of injury.122 The mobilization of EPCs 
in response to cytokine gradient increases simultaneous 
maturation and functional activity compared to the 
resident progenitors inside the bone marrow niche.13 
The circulating EPCs can lose their stemness features 
(CD133↓, and CD34↓) accompanied with the expression 
of certain markers such as CD31, and vWF with the 
reaching to the injured site.13 These data confirm that 
bone marrow EPCs are putative progenitor cells in 
the induction of angiogenesis in the ischemic regions. 
Besides cell source, the number of graft stem cells can 
predetermine the angiogenesis outcomes, especially in 
tissue with chronic injuries. However, less and excessive 
stem cells can cause the disruption of the healing process 
via an imbalance in immune cell activity and normal 
development of resident cells and transplanted stem 
cells.123 Taken together, the number and source of EPCs 
can be effective in the induction of angiogenesis in the 
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ischemic myocardium. 

Conclusion 
The current systemic review and meta-analysis showed 
the eligibility of EPCs in the restoration of cardiac 
function following experimentally induced MI rodents, 
either rats or mice. The stimulation of angiogenesis and 
reduction of fibrosis along with the improvement of 
cardiac functional parameters (EF, and FS) are the main 
outcomes following EPC transplantation. Taken together, 
the current data provide new insights into the potential 
clinical application of EPCs and their regenerative 
properties in patients with MI. 
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