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Introduction

Chronic liver inflammation plays a pivotal role in 

physiopathology of liver cirrhosis.1,2 Many different anti-

inflammatory strategies have been tried to reduce 

severity of cirrhosis or its complication. As a logical 

mechanism to reduce inflammation in the liver, some 

studies investigated the role of the anti-inflammatory 

neural pathway in modulation of hepatic inflammation. 

The function and dysfunction of such intrinsic protective 

mechanism during cirrhosis and some controversial 

findings about the involvement of the vagus nerve in 

hepatic disease are the subjects of current review. 

 

The inflammatory reflex 

For the first time, Tracey and coworkers described a 

previously unrecognized role of efferent vagus nerve 

signaling in modulating inflammation,3 and the term 

“inflammatory reflex” was introduced in an influential 

report.4 The same group of investigators showed that 

such cholinergic inflammatory reflex requires the α7 

nicotinic acetylcholine receptor (α7nAChR), a ligand-

gated ion channel expressed on macrophages, 

lymphocytes, neurons and other cells.5 They reported 

that vagus nerve stimulation (VNS) inhibits tumor 

necrosis factor (TNF) synthesis in the wild-type mice, 

but fails to inhibit TNF synthesis in the α7-nicotinic 

receptor-knockout (α7KO) mice. Thus, they concluded 

that the α7nAChR subunit is essential for inhibiting 

cytokine synthesis by the cholinergic anti-inflammatory 

pathway (CAIP).5 Further investigations of this 

prototypical vagus nerve circuit, have shown that an 

acetylcholine-producing T cells are required for 

inhibition of cytokine production by VNS.6 Without 

these T-cells (e.g. in nude mice, who lack functional T-

cells), vagal stimulation had no anti-inflammatory effect. 

Surprisingly in this nude mice, adoptive transfer of ACh 

producing T cells restores some vagal anti-inflammatory 

action.6 Considering these studies, in the latest model, 

the action potentials originating in the vagus nerve is 

propagated to the celiac ganglia, where the splenic nerve 

originates. Norepinephrine released from the splenic 

nerve interacts with β2-adrenergic receptors and causes 

the release of ACh from T cells containing functional 

choline acetyltransferase (T-ChAT cells). ACh interacts 

with α7nAChRs on macrophages and suppresses 

proinflammatory cytokine release and inflammation.7 

Also, in another set of experiment the gastrointestinal 

CAIP was investigated and the results showed that the 

vagus nerve dampens intestinal inflammation by directly 

interacting with the intestine resident macrophages 

without the involvement of the spleen.8 

 

The inflammatory reflex in the liver 

As the largest solid organ in the human body, the liver 

plays a central role in the regulation of homeostasis. The 

structure of the liver has profound implications for its 

immunological function. Liver’s immune cells play 

pivotal roles in the first defense line against invading 

intestinal pathogens and modulation of these 

inflammatory responses is critically important in this 

organ. Inappropriate responses, either too weak or too 
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strong immune reactions may lead to spreading infection 

or tissue damage. Thus intrinsic immunomodulatory 

systems may be important in these settings.9 

 

The hepatic vagus branches 

The liver is innervated by parasympathetic afferent and 

efferent fibers and emerging evidence indicates 

important role for this neural element in the regulation of 

hepatic functions. The vagus nerve as the longest cranial 

nerve is the primary link between liver and brain, and 

after leaving the brain, in the thorax, the left vagus 

branch forms the anterior vagal trunk enters abdomen 

through esophageal hiatus and the hepatic vagus 

branches originate from this anterior vagal trunk. These 

branches join the hepatic plexus and through it are 

distributed to the liver at its hilus and supply the organ.10 

In some experimental models of chronic liver damage 

such as carbon tetrachloride (CCl4) induced cirrhotic rat 

livers, cholinergic nervous fibers are known to increase 

in the injured area.11 

 

Experimental evidence 

To date, different animal models of systemic or local 

inflammation have been used to investigate the role of 

CAIP and α7nAChRs in modulation of inflammation in a 

variety of tissues including liver.12 In a recent study, 

Sakata et al. reported that in humans, the highest 

accumulation of α7nAChR in the body was observed in 

the liver.13 This finding may indicates the importance of 

vagus-α7nAChR axis in the liver. There is evidence 

showing the protective role of vagus-α7nAChR axis in 

liver diseases. Nishio et al. have indicated that vagus 

nerve via α7nAChRs on Kupffer cells regulates these 

cells activation in nonalcoholic steatohepatitis (NASH).14 

In this study, wild-type (WT) mice undergoing hepatic 

vagotomy were fed a methionine- and choline-deficient 

(MCD) diet for 1 week and the results showed that 

hepatic vagotomy aggravated MCD diet-induced NASH, 

and also indicated that α7KO mice who were fed MCD 

diet for 1 week developed advanced NASH with highly 

activated Kupffer cells.14 Treatment of experimental 

NASH by nicotine which is a non-specific α7nAChR 

agonist was shown in another study.15 In addition to the 

experimental models of NASH development, the vagus 

nerve attenuates fulminant hepatitis induced by 

lipopolysaccharide (LPS) and D-galactosamine in mice.16 

In another set of experiments, it was shown that hepatic 

vagus-α7nAChR axis attenuates hepatocyte damage 

upon ischemia–reperfusion (I/R) injury,17,18 and Fas-

Induced Apoptosis.19 A study which carried out by Park 

and colleagues has indicated that cytoprotective 

mechanisms of nicotine in I/R injury exert via heme 

oxygenase-1 induction and intraperitoneally 

administration of nicotine can reduces the elevated levels 

of inflammatory cytokines after reperfusion.18 Fujing Li 

and colleagues indicated that PNU-282987, a selective 

α7nAChR agonist has protective effect in hepatic I/R 

injury by inhibition of high-mobility group box 1 

(HMGB1) protein expression and nuclear factor kappa B 

(NF-kB) activation in mice.20 Activation of CAIP by 

long-term nicotine administration reduces sepsis-induced 

oxidative damage in several tissues including liver which 

appears to involve inhibition of neutrophil activity in the 

inflamed tissues.21 Likewise, high frequency VNS 

improves portal hypertension in cirrhotic rats.22 Clinical 

evidence indicates that when vagus nerve activity is 

deficient, inflammation is excessive.23 Vagotomy 

resulted in an enhanced influx of neutrophils and a 

marked increase in proinflammatory cytokine levels and 

liver damage.24 Hence, by considering these issues, the 

vagus-α7nAChR axis may play an important intrinsic 

protective role in centrally mediated hepatic immune 

responses. This protective role of inflammatory reflex 

should be noticed during liver transplantation surgery 

and CAIP agonists may be a potential target for sepsis 

after liver transplantation. 

 

Autonomic dysfunction (AD) in cirrhosis 

Autonomic dysfunction (AD) in the context of cirrhosis 

has been of increasing interest over the last 20 years. 

Accumulated evidence have shown that, one of the well-

known complication and independent predictor of 

mortality of cirrhotic patients is AD.25,26 As the 

autonomic nervous system (ANS) activity involves 

multiple organs, autonomic dysfunction usually 

encompasses various and multiple disorders and may 

impair the quality of life. AD can be primary or 

secondary, acute or chronic and transient or 

progressive.25 There are many reports to indicate that 

liver cirrhosis is associated with AD and the vagal 

activity appears to be significantly lower in cirrhotic 

subjects in comparison with healthy individuals.27,28 

Figure 1 shows an example of a concept map that 

describes the relationship between vagus-α7nAChR axis, 

worsening of cirrhosis due to inflammation and vagal 

hypoactivity in cirrhosis. 

 

Diagnosis and prevalence of AD in cirrhosis 

AD can be assessed clinically by various autonomic 

function testing methods in patients with cirrhosis of 

different etiology. Some of these methods such as five 

standard cardiovascular autonomic reflex tests are the 

gold standard for identifying vagal or sympathetic 

function.29 By these tests parasympathetic integrity was 

explored by beat-to-beat variation during Deep Breathing 

(DB), Valsalva Maneuver (VM) and Lying-to-Standing 

(LS) tests. Sympathetic function was assessed by 

Orthostatic Hypotension (OH) and Sustained Handgrip 

(SH) tests.30 These tests provide information about the 

nature and severity of autonomic disorders and have 

been used in the clinical setting to generate a large body 

of evidence on AD. 

The clinical picture of a patient with cirrhosis presenting 

with AD is similar to AD of any cause. Previous studies 

have been evaluated the prevalence of AD in patients 

with chronic liver disease. Cirrhosis, both alcoholic and 

nonalcoholic, has been reported to be associated with 

AD, as well as other hemodynamic and circulatory 
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disturbances.31,32 Thuluvath and colleagues showed that 

45% of patients with alcoholic liver disease and 43% 

with non-alcoholic liver disease had evidence of 

parasympathetic damage; 11% of patients with alcoholic 

liver disease and 12% with non-alcoholic liver disease 

had sympathetic damage.31 In other study, symptoms 

associated with cardiovascular AD were present in 

almost 70% of patients with primary biliary cirrhosis 

(PBC) and also in those in a precirrhotic stage.33 

Hendriksen et al. found that vagal dysfunction is 

common in well compensated chronic liver disease and 

mortality rate in patients with vagal neuropathy was 30% 

compared with 6% in those with normal autonomic 

function.34 Gentile et al. reported AD in 60% of their 

patients.32 In this last study, the alterations of the 

parasympathetic function were significantly more 

frequent than those of the sympathetic function.32 

 

 
Figure 1. A hypothetical concept map about relationship 
between suppression of inflammatory responses through vagus-
α7nAChR axis, worsening of cirrhosis due to inflammation and 
vagal hypoactivity in cirrhosis. 

 

In a study published in 2003, autonomic function using 

five standard tests were examined in 20 cirrhotics and 20 

age and sex matched controls and was shown that sixteen 

(80%) of the cirrhotic subjects were found to have 

evidence of AD.35 Also in another study, AD observed in 

67.7% of cirrhosis patients and in this study, 

parasympathetic dysfunction was more prevalent than 

sympathetic dysfunction (59.7% vs. 20.9%).36 The 

assessment of AD by standard cardiovascular autonomic 

reflexes is a little troublesome and have some drawbacks 

such as the need for active collaboration from the 

patients and short-term characteristic of measurements. 

Recently, Stevens and colleagues have investigated the 

presence of peripheral AD in PBC by using a novel and 

innovative microvascular optical technologies and 

provides evidence for the presence of peripheral AD in 

PBC patients.37 

Along with AD assessment by standard tests, presence of 

AD in cirrhotic patients can be determined by linear (e.g. 

spectral analysis) and nonlinear (e.g. Poincare ́ plots) 

analysis of heart rate variability (HRV) and it has been 

shown that cirrhosis is accompanied by a significant 

decreases of HRV indexes.27,28,38,39 Spectral analysis of 

the R-R interval time series of heart beats can be carried 

out by fast Fourier transformation (FFT).40 In this 

method, a low-frequency component (LF), which reflects 

predominantly sympathetic activities, and high-

frequency component (HF), which reflects the inhibition 

of vagal tone during inspiration can be assessed and 

LF/HF ratio is used as a measure of sympathovagal 

balance.27,40 Likewise, Poincare´ plots are used to 

distinguish the effects of vagal modulation from other 

causes of heart rate variation.41 Therefore, HRV analysis 

can be used as a measure of AD in cirrhotic patients. By 

2-year follow-up periods of cirrhotic patients, Ates et al. 

showed that HRV measurements in cirrhotic patients 

were significantly much lower in nonsurvivors than in 

survivors.42 They conclude that increasing severity of 

cirrhosis is associated with a reduction in HRV.42 Other 

report showed that the relative risk of death increased by 

7.7% in patients with cirrhosis for every 1-ms drop in a 

long-term HRV index as measured using Poincare’ 

plot.27 

Despite many studies have used HRV analysis in 

diagnosis of AD in cirrhosis, on the other hand, some 

studies suggest that analysing HRV may not necessarily 

provide information on vagal activity when an end-organ 

hyporesponsiveness to cholinergic stimulation exists and 

this may pose limitations on the use of heart rate 

monitoring in this patient population.43,44 

 

Pathophysiology of AD in cirrhosis 

Underlying mechanisms of AD in cirrhosis is largely 

unknown. Immunological and metabolic abnormalities 

may play a role, and some hypotheses are presented to 

explain the resultant decreased in autonomic function in 

cirrhosis. An interesting hypothesis is that AD is one of 

the consequences of the peripheral vasodilation 

associated with portal hypertension.45 Peripheral 

vasodilation stimulates the release of angiotensin and 

catecholamines and administration of an angiotensin 

converting enzyme inhibitor improves the HRV 
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confirming that angiotensin II plays a role in AD.46 In 

other study, it is became clear that systemic 

inflammation exacerbates cytotoxic brain edema in bile 

duct ligated (BDL) rats and is a major component in the 

genesis of neural dysfunction in liver diseases.47 

Moreover, the brain cholinergic system alterations have 

been examined in both cirrhotic patients and animal 

model of BDL induced liver damage and the results 

indicate an increased activity of the brain levels of 

acetylcholinesterase (AChE), while the activity of 

choline acetyltransferase (ChAT) remains unaffected.48 

Recently, we showed that centrally cholinergic system 

activation prevents development of endotoxin tolerance 

in rat liver.49 These studies suggest that neural 

impairment may occur during liver disease due to 

peripheral and central causes; however greater 

understanding of the underlying mechanisms of AD of 

cirrhosis is required. Regardless of the etiology of 

disease, AD has been suggested to predict poor prognosis 

in patients with cirrhosis.50 

 

The inflammatory reflex and vagal dysfunction 

AD is seen in patients with cirrhosis as well as diabetes 

mellitus, some autoimmune disorders and other chronic 

illnesses, such as HIV or Parkinson's disease. In a recent 

study, we investigated the role of vagus nerve in BDL-

induced liver fibrosis in rats.51 We demonstrated by both 

immunohistochemistry and immunofluorescence staining 

that α7nAChR is mainly expressed in the hepatocytes of 

cirrhotic liver with minimum expression in control 

healthy liver. In this study, surgical or pharmacological 

inhibition of vagus nerve did not change the progression 

of hepatic fibrosis in BDL model of cirrhosis.51 This data 

may indicate that vagal neuropathy occurrence during 

liver damage which interrupts the protective role of 

vagus-α7nAChR axis in chronic liver disease. But it 

should be noted that, BDL model is characterized by 

higher damages to cholangiocytes and bile duct 

hyperplasia at peri-portal region, while recent studies 

which indicated the protective role of α7nAChR 

activation focused on ischemia/reperfusion injury and 

Fas-induced hepatitis in the liver which mainly involve 

hepatocytes.17-19 Therefore, this hepatocytes injury 

models may be more appropriate for investigating of 

vagus-α7nAChR axis in the liver. Interestingly, in a 

recent study, Gergalova et al. showed that α7nAChR is 

expressed in hepatic mitochondrial outer membrane and 

regulates early proapoptotic events like cytochrome c 

release and has protective anti-apoptotic effects.52 Thus, 

in addition to plasma membrane α7nAChRs, there exist 

mitochondrial α7nAChRs which control mitochondria 

functions and their apoptotic susceptibility.52 

 

Points of dispute 

Conversely to inflammatory reflex hypothesis, some 

other studies indicate the cytotoxic and fibrogenic effects 

of nicotine by means of nicotinic acetylcholine receptor 

that aggravates the process of liver disease.53,54 It has 

been shown that nicotine induces fibrogenic changes in 

human liver via nicotinic acetylcholine receptors.55 

Recently Zhou et al. indicated liver detrimental effect of 

nicotine by both in vivo (thioacetamide (TAA)-induced 

liver damage) and in vitro (with HepG2 and LX-2 cell 

lines) experiments in mice.53 In this study, oral 

administration of nicotine significantly aggravated TAA-

induced hepatic damage through enhancing TGF-β 

secretion and oxidative stress.53 Soeda et al. have shown 

that hepatic stellate cells express α7nAChRs and nicotine 

at levels in smokers’ blood is pro-fibrogenic, through 

actions on these expressed receptors.55 Consistent with 

these findings, we can find some protective effects of 

selective hepatic vagotomy against BDL-induced liver 

damage. In our study, vagotomy could induce a 

significant decrease in elevated serum AST in 

vagotomized rats compare to non-vagotomized BDL 

rats.51 

In addition, vagus nerve releases ACh and subsequent 

ACh induces fibrogenic effects via muscarinic 

acetylcholine receptors in NASH and in primary human 

hepatic stellate cells (hHSC).56 Morgan and colleagues 

showed that cultured hHSC produce ChAT and AChE, as 

well as secreting ACh and suggested that ACh is an 

autocrine growth factor for HSC proliferation and 

fibrogenesis.56 In another study, in the BDL model, 

vagotomy induces the disappearance of muscarinic-type-

3 (M3) ACh receptor, a marked impairment of 

cholangiocyte proliferation and activation of apoptotic 

cell death.57 When BDL rats were treated with forskolin, 

an activator of adenyl cyclase, cAMP intracellular levels 

were maintained and vagotomy failed to impair 

cholangiocyte proliferation and did not induce 

apoptosis.57 In another hand, Kiba et al. demonstrated 

that vagal hyperactivity after ventromedial hypothalamic 

lesioning stimulates Fas mediated apoptosis through the 

cholinergic system in the rat liver, which is in 

contradiction with inflammatory reflex hypothesis.58 

 

Conclusion and perspective 

The liver is innervated by parasympathetic nerve fibers 

and both muscarinic and nicotinic acetylcholine 

receptors are expressed in the liver and exert many 

different functions. Chronic inflammation plays a pivotal 

role in many disease states including liver cirrhosis and 

cancer.59,60 In other hand sepsis is the major cause of 

death in patients suffering from cirrhosis.61 This 

reciprocal interaction between inflammation and 

cirrhosis persuade physicians to applying novel 

therapeutic strategies, for example strategies based on 

RNA interference technology in diseases 

management.62,63 Also, considering the increased 

frequency of liver transplantation, understanding the role 

of parasympathetic nerve fibers in liver is of particular 

importance since the human liver is not re-innervate after 

transplantation. It appears that brain modulates 

inflammatory responses by activation of vagal efferent 

fibers. Therefore, the parasympathetic system may 

modulate the inflammatory response in real time. 

However, during the pathologic conditions such as liver 
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cirrhosis, the brain-liver connection through vagus nerve 

may not play its role in modulation of immune 

responses. 

This may help us to explain why AD and specially 

hypoactivity of the vagal nerve contributes to poor 

survival in cirrhosis. Since, tight regulation of 

inflammatory responses is vital to ensure that it does not 

spin out of control and becomes harmful to the host; 

disruption of inflammatory reflex by vagal neuropathy 

may be the cause of significant mortality rate of cirrhotic 

patients due to sepsis. In this sense, vagus nerve 

stimulation appeared as a possible efficient procedure to 

minimize inflammation. The relationship between vagus 

nerve activity and inflammation in the process of 

cirrhosis is complex and studying the interaction between 

them will help developing novel therapeutic strategies 

for cirrhotic patients. 
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