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Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is 

considered as one of the most frequent malignancies 

associated to T-cells, which is typically reflected as an 

invasive tumor.1 Overall, over 80% of patients reply to 

chemotherapy with complete clinical remission, and up 

to 50% experience relapse with chemoresistant 

disease.2 Despite a powerful 40%–50% overall survival 

rate (reached over the past ten years), refractory 

relapsed leukemia remains an unsolved therapeutic 

problem.3,4 Therefore, therapies with another 

mechanism of action are instantly required. 

Effectiveness of RNA interference (RNAi) in cancer 

medical care has been characterized by high efficiency 

and potential, induction of silencing within the 

advanced stages of growth, transmission of silenced 

gene to consequent generation, low price compared to 

the opposite strategies of gene therapy, and high 

specificity compared to the opposite strategies of cancer 

therapy like chemotherapy and lack of side effects 

compared to chemotherapies.5,6 

Protein tyrosine phosphatase, non-receptor type 22 

(PTPN22) gene is located on human chromosome1p13.3-

p13.1 and encodes a protein referred to as lymphoid 

tyrosine phosphatase (Lyp) in human and PEST-enriched 

protein tyrosinephosphatase (Pep) in mice.7 PTPN22 is 

expressed in T, B, NK, and dendritic cells. The 

physiological function of PTPN22 has been studied 

primarily in the context of T cells; however, it is not 

fully understood. PTPN22 is supposed to be located in 

the cytoplasm of T-cells and interacts with many 

signaling molecules, such as Lck, ZAP70, Csk, and Vav, 

thereby attenuating TCR signals.8 Juxtaposition of 

promoter and enhancer components of TCR genes with 

transcription factor genes throughout VDJ recombination 

is among the cytogenetic changes inflicting T-ALL. 

Cytogenetic changes play a crucial role in 

leukemogenesis in cancers of immune cells together with 

T-ALL by altering the expression and function of 

miRNA, which may perform as tumor suppressors or 

oncogenes.9 

MicroRNAs (miRNAs) are single stranded ~22 

nucleotides (nt) long non-coding RNAs that regulate 

gene expression at the post-transcriptional level. 

MiRNAs are encoded in host genes, which may be 

placed in introns or exons of protein-coding genes, also 

as in non-coding genes.10 miRNA restrictive roles in 
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Abstract 
Purpose: T-cell acute lymphoblastic leukemia (T-ALL) is one of the most common 

malignancies associated with T-lymphocytes, accounting for 10 to 15 percent of ALL cases 

in children and 25 percent in adults. Innovative therapeutic approaches that overcome 

ineffective treatments on tumor cells may be a potential source of improvement in 

therapeutic approaches. Suppression of gene expression at transfusion level is one of the 

important strategies in gene therapy. The expression of PTPN22 and miR-181 genes in all 

types of hematologic malignancies increases and is likely to contribute to the survival and 

death of cells by affecting a variety of signaling pathways. The purpose of this study was to 

determine the role of PTPN22 inhibition by siRNA, and alteration in miR-181a and miR-

181b in Jurkat cell line. 

Methods: Jurkat cells were transfected with 80 pmol of siRNA to inhibit PTPN22. After 

that, expression of PTPN22 mRNA and transcript levels of miR-181a and miR-181b were 

measured with Real-time PCR after 48hrs.  

Results: Experiments demonstrated that siRNA transfection resulted in significant 

downregulation of PTPN22 mRNA after 48 hrs in 80 pmol dose of siRNA. Moreover, 

transcript levels of both miR-181a and miR-181b was decreased after transfection. 

Conclusion: PTPN22, miR-181a and miR-181b might be involved in progression of 

Jurkat cells and targeting these molecules by RNAi might confer promising tool in 

treatment of T-ALL. 
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numerous biological process and physiological events, 

and disease pathological process have become evident 

within the previous few years.11 To date, solely a number 

of studies has addressed the importance of miRNAs in 

haematopoiesis.12 The expression profiles of murine 

hematopoietic-specific miRNAs (miR-142, miR-181 and 

miR-223) are represented in B and T cells, monocytes, 

granulocytes, and erythroid cells.13,14 

MiR-181 was concerned in regulation of the 

differentiation of B cells, T cells and natural killer (NK) 

cells during normal hemogenesis. Its family has four 

members (miR-181a, miR-181b, miR-181c, and miR-

181d).15 It has additionally been noted that miR-181 

includes a dual behavior and acts as a tumor suppressor 

in glioma,16 and in oral epithelial cell carcinoma,17 

however, it also behaves as an onco-miRNA in non-

small-cell lung cancer,18 breast cancer,19 hepatocellular 

carcinoma,20 gastric and colon cancer.21 Additionally, 

miR-181a was very powerfully expressed within the 

thymus, the primary lymphoid organ, that chiefly 

contains T lymphocytes. MiRNA-181a plays a crucial 

role within the selection and activation of T cells, and 

miRNA-181a deficiency results in the rising the rate of 

autoreactive lymphocytes. PTPN22 and DUSP6 (both 

have a key role throughout T cell activation) are targets 

of miRNA-181a.22 Accumulating evidence indicates that 

miR-181a incorporates a role in the development of 

medical specialty malignancies; however, it is still 

unclear. Some findings suggest that miR-181a behaves 

as an onco-miRNA in leukemia. Other indicates miR-

181a acts as a tumor suppressor.23  

Oncomirs, mutated tumor suppressor genes, and a 

number of other genes concerned in tumor progression 

are smart targets for gene silencing by RNAi-based 

therapy.24 The most important advantage of RNAi in 

cancer therapy is targeting multiple genes of assorted 

cellular pathways concerned in tumor progression.25 

Here, we specifically investigated the effects of PTPN22 

silencing in human acute T-cell leukemia cell line (Jurkat 

cell) and its effect on the expression of miR181a and 

miR181b. We have shown that PTPN22 can be 

considered as a potent target molecule in T-ALL therapy. 

 

Materials and Methods 

Cell culture 

RPMI-1640 culture medium and fetal bovine serum 

(FBS) were purchased from GibcoBRL Company. Jurkat 

cell line was obtained from the Iranian Biological 

Research Center (IBRC), Tehran, Iran. Jurkat cells were 

grown in RPMI-1640 supplemented with 10% (v/v) FBS, 

penicillin (100 U/ml), streptomycin (100 µg /ml; 

SimgaAlderich, St. Louis, MO, USA), and maintained at 

37 C in humidified 5% CO2 atmosphere. 

 

siRNA transfection 

siRNA was purchased from Santa Cruz Biotechnology. 

Before siRNA transfection, the Jurkat cells were seeded 

at a density of 2x105 cells/well in 6-well plates (untreated 

cells were kept as controls) in serum and antibiotic free 

RPMI-1640 medium. All transfections were performed 

using siRNA according to the manufacturer’s 

recommendations. In brief, transfection reagent (6 µl/ml 

of transfection reagent) and siRNA (at a final 

concentration of 80 pmol) were diluted in siRNA 

transfection medium (Santa Cruz Biotechnology) 

separately and mixed gently. After incubation for 20 min 

at ambient temperature, the diluted solutions were 

combined and incubated for another 30 min at ambient 

temperature. Thereafter, the mixtures were added to each 

well (the cells incubated only with transfection reagent 

were considered as controls). The cell culture plates were 

then incubated for 6 hrs at 37 °C in a CO2 incubator. The 

cells incubated under the aforementioned conditions 

were added in RPMI-1640 medium containing FBS and 

antibiotics (concentration of 2 normal growth medium) 

without removing the transfection mixture. 

 

qRT-PCR 
For PTPN22 transcription evaluation, total RNA was 

isolated from cells using RiboEx reagent (GENEALL 

Biotechnology, Seoul, Korea) according to the 

manufacturer’s instructions. The reverse transcription 

reactions were performed with randomhexamer primer 

and a Reverse Transcriptase M-MLV (Takara, Korea) 

following the manufacturer’s protocol. Quantitative 

Real-time PCR was performed using a standard SYBR 

Green PCR master mix (Takara, Korea) protocol on a 

Roche LightCycler 96 system (Roche, Germany) 

according to the instructions. 

β-actin was used as reference gene for determining the 

mRNA expression level of PTPN22. The primer 

sequences are listed in Table 1. Each sample was 

analyzed in triplicate. The 2-ΔΔCt method was used to 

determine the relative quantitation of gene expression 

levels.26 

To determine the transcription levels of miR181a and 

miR181b, total RNA was isolated from cells using 

RiboEx reagent (GENEALL Biotechnology, Seoul, 

Korea) according to the manufacturer’s manuals. 

Complementary DNA (cDNA) was synthesized by 

cDNA Synthesis Bioneer kit from 1 mg of total RNA. 

Following this, qRTPCR was performed in the Roche 

LightCycler 96 system (Roche, Germany). The PCR 

reaction conditions were as follows: 3 µl of cDNA 

template, 0.5 mM of each primer, 12 µl of SYBR 

green reagent, and 9 µl of nuclease-free distilled 

water. The cycling conditions were as follows: 94 °C 

for 5 min for cDNA and primer denaturing, followed 

by 35 cycles at 94 °C for 30 s, 56 °C for 30 s, and 72 

°C for 40 s. Quantitative RT-PCR was carried out for 

miR-181a and miR181b in total volume of 10 μl 

reaction mixture using miRCURY LNA™ Universal 

RT microRNA PCR and SYBR Green master mix 

(Exiqon, Vedbæk Denmark) according to the 

manufacturer’s protocol. Amplification was performed 

as follows: 95 °C for 10 min, 40 cycles of 95 °C for 

10 s and 60 °C for 10 s, ramp rate 100% under 

standard condition. miR-U6 was used as the 
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housekeeping gene. The primer sequences were as 

follows in Table 1. Each sample was analyzed in 

triplicate. The relative quantitation of gene expression 

levels was calculated using 2-ΔΔCt method.26 

 
Table1. Primer sequences in Real-time PCR. 

Target gene Strand Primer sequence 

β-actin 
Forward 5ʹ-TCCCTG GAGAAGAGCTACG-3ʹ 

Reverse 5ʹ-GTAGTTTCGTGGATGCCACA-3ʹ 

PTPN22 
Forward 5ʹ-CCAGCTACATCAATGCCAACTTC-3ʹ 

Reverse 5ʹ-CCAAATCATCCTCCAGAAGTCC-3ʹ 

miR-181a Target sequence 5ʹ-AACAUUCAACGCUGUCGGUGAGU-3ʹ 

miR-181b Target sequence 5ʹ-AACAUUCAUUGCUGUCGGUGGGU-3ʹ 

 

Statistical analysis 

All data were analyzed using Graphpad Prism software 

version 7.0 (Graph Pad Prism; San Diego, CA, USA) and 

was expressed as means ± standard deviation (SD). The 

Kolmogorov-Smirnov test was conducted to evaluate the 

normality of the scale variables. Mann-Whitney U and 

Kruskal-Wallis tests were used for comparing groups 

with parametric data. P<0.05 was considered to indicate 

a statistically significant difference. 

 

Results and Discussion 

siRNA downregulated PTPN22 mRNA in Jurkat cells 

The results showed that specific siRNA transfection 

downregulated significantly (P<0.0001) the expression 

of PTPN22 mRNA compared with the control group. At 

48 hrs after transfection with 80 pmol of the specific 

siRNA molecule of PTPN22, the expression of PTPN22 

was 23% (Figure 1).The results showed that highest 

reduction in expression level of the PTPN22 mRNA in 

Jurkat cells treated by specific siRNA was achieved at a 

dose of 80 pmol and 48 hours after transfection. 

 

 
Figure 1. Inhibition of PTPN22 gene in the Jurkat cell line. 
Cells were transfected with siRNA specific to 80 pmol of PTPN22 
and 48hrs after transfection, the RNA of the cells was extracted 
and the expression of the PTPN22 mRNA was evaluated by 
qRT-PCR (P<0.0001). 

 

Downregulation of PTPN22 lead to downregulation of 

miR-181a  

The expression of miR-181a (Figure 2) in Jurkat cells 

after transfection in a dose of 80 pmol of siRNA-specific 

PTPN22 was evaluated by qRT-PCR assay. The results 

showed that the miR-181a expression levels was 

decreased significantly after transfection with liposomes 

containing PTPN22 specific siRNA in Jurkat cells 

(P<0.05). 

 

 
Figure 2. Effect of PTPN22-siRNA on miR-181a expressions 
in Jurkat cell line. After transfection with 80 pmol of PTPN22-
siRNA and 48 hrs after transfection, RNA was extracted and the 
expression of miR-181a was detected by qRT-PCR. **** 
indicates a significantly decrease in miR-181a levels in Jurkat 
cells following transfection with PTPN22-siRNA (80pmol dose) 
compared with the control group cells (P <0.001). 

 

Downregulation of PTPN22 lead to downregulation of 

miR-181b 
The expression of miR-181b (Figure 3) in Jurkat cells 

after transfection in a dose of 80 pmol of siRNA-specific 

PTPN22 was evaluated by qRT-PCR assay. The results 

showed that the miR-181b expression levels was 

decreased significantly after transfection with liposomes 

containing PTPN22 specific siRNA in Jurkat cells 

(P<0.05). 

Despite significant advances in immunological treatment 

and diagnosis of T-cell acute lymphoblastic leukemia (T-

ALL), the disease is associated with high mortality rate 
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in adults. The therapeutic efficacy has been reported to 

be between 25% and 40%.27 Better understanding of the 

mechanisms of molecular biology of leukemia can 

provide a better knowledge of their specific 

pathogenicity mechanisms and better therapeutic 

strategies.28 

 

 
Figure 3. Effect of PTPN22-siRNA on miR-181b expressions 
in Jurkat cell line. After transfection with 80 pmol of PTPN22-
siRNA and 48 hrs after transfection, RNA was extracted and the 
expression of miR-181a was detected by qRT-PCR. *** indicates 
a significantly decrease in miR-181b levels in Jurkat cells 
following transfection with PTPN22-siRNA (80 pmol dose) 
compared with the control group cells (P <0.0001). 

 

Nowadays, targeted molecular therapy is a growing new 

technology for cancer treatment. A strong approach of 

gene therapy is a targeted treatment, in which the target 

is a specific gene that is enhanced or suppressed in tumor 

cells.29 One of the therapeutic factors in this method is 

exertion of siRNA, which is used to interfere with the 

expression of the desired gene attributed to the 

formation, growth, and metastasis of the tumor. The use 

of siRNA is a strong approach to inhibit specific 

genes.30,31 

More than half of the known miRNAs are located in 

genomics are associated with cancer,32 which indicate the 

important role of miRNAs in all stages of the cancer. 

Although understanding how miRNAs affect the 

pathogenesis of cancer is complicated, studies have 

shown that the abnormal expression of miRNAs can be 

considered as biomarkers for the prognosis, diagnosis, 

classification, and treatment of cancer.10 Each tissue 

expresses a different level of specific miRNAs and in 

fact has a specific expression pattern. It is, therefore, 

natural that any tumor also has a specific expression 

pattern of miRNAs, which can be used to detect the 

origin of metastatic tumors and to distinguish between 

different subtypes of a specific cancer.33 Even this 

particular pattern can be related to the degree of tumor 

and status of patient. Increasing evidence suggests that 

miRNAs play an important role in cancer biology, and 

recent studies have established the role of oncogenic and 

tumor inhibitory miRNAs in cancer cells.34,35 

Hyperactivity of PTPN22 can disrupt the function of T 

lymphocytes.36 Impaired activity of these cells is due to a 

disruption of the evolution of the intracellular messaging 

process, which interferes with host immune responses.7 It 

seems that the lack of balance of humoral and cellular 

immune responses due to impaired PTPN22 function 

plays a role in the pathogenesis of autoimmune diseases 

such as rheumatoid arthritis and multiple sclerosis.37 On 

the other hand, studies have also demonstrated the role of 

PTPN22 in pathogenesis of lymphoid and myeloid 

leukemia.38 

It has been shown that the miR-181 family plays an 

important role in mechanobiology of blood cells, 

including lymphocytes and monocytes. Moreover, miR-

181a plays an important role in maturation and 

differentiation and function of T lymphocytes. Aberrant 

expression of miR-181a has been observed in a variety of 

malignancies, including breast cancer, liver, colon, and 

leukemia.39,40 

In this study, we examined the effect of siRNA 

transfection on the expression of PTPN22 gene and its 

consequence on miR-181a and miR-181b in Jurkat cell 

line. In our previous study, we investigated the role of 

PTPN22 in acute lymphoblastic T-cell leukemia and 

showed that this gene contributed to the increased 

survival and proliferation of cancer cells of acute T cell 

lymphoblastic leukemia.41 In this study, it was observed 

that treatment with PTPN22-siRNA resulted in decreased 

expression of PTPN22 at the level of mRNA after 48 

hours in Jurkat cells. Moreover, the highest efficiency in 

suppression was obtained at a concentration of 80 μM. 

Furthermore, the results indicated that the expression 

levels of miR-181a and miR-181a were significantly 

reduced after transfection in Jurkat cells. 

 

Conclusion 

Considering all the facts, we indicated that the specific 

suppression of PTPN22 by siRNA significantly reduced 

the expression of this gene in Jurkat cells. In addition, 

suppression of PTPN22 gene expression led to 

downregulation of miR-1811 and miR-181b. As a result, 

PTPN22 and miR-1811 and miR-181b could serve as 

factors in designing therapies for T-ALL as well as 

biomarkers for diagnosis of this cancer. 
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