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Introduction
Manganese (Mn) is an essential element incorporated 
in the structure of several vital enzymes.1,2 On the other 
hand, some pathological conditions could lead to Mn 
accumulation in the human body.3 The brain is the primary 
target of Mn toxicity.4-7 It has been found that increased 
body Mn levels led to severe neurological complications.4,5 
Dopaminergic system is severely affected by Mn.4-7 Hence, 
Mn-induced neurotoxicity clinically appears as locomotor 
dysfunction resembles Parkinsonism (Figure 1).4-7 

Mn is excreted in the bile (Figure 1).8-11 Therefore, any 
defect in Mn excretion could lead to serum and eventually 
brain high Mn levels (Figure 1).8-11 It has been found 
that liver failure and cirrhosis is associated with brain 
Mn accumulation.8-11 Cirrhosis-associated brain Mn 
accumulation could be involved in the pathogenesis of 
cirrhosis-related locomotor dysfunction (Figure 1).8-11 

The cellular mitochondrion is a potential target of Mn 
toxicity.12-17 Mn is accumulated in the mitochondrial 
matrix through the calcium (Ca2+) transporters.13,18,19 
It has been reported that Mn impaired cellular energy 

(ATP) metabolism and induced the release of cell death 
mediators form mitochondria (Figure 1).5,17,18,20 

Carnosine is an endogenously found dipeptide which 
reaches very high concentrations in tissues such as skeletal 
muscle and the brain.21 Several pharmacological roles have 
been attributed to carnosine.21-23 This peptide is also widely 
evaluated for its neuroprotective properties.22,24-27 On the 
other hand, the mitochondrial protecting properties of 
carnosine have been mentioned in previous studies.28-32 
Hence, it seems that carnosine provides its cytoprotection 
through regulation of cellular mitochondrial function.28-31 

The current study was designed to evaluate the role of 
carnosine administration on Mn-induced mitochondrial 
injury in isolated brain mitochondria. Mice brain 
mitochondria were exposed to Mn (0.1 mM-10 mM) 
and carnosine (1 mM). Several mitochondrial indices 
including mitochondrial dehydrogenases activity, swelling, 
depolarization, and ATP content were assessed. The 
results might help to develop therapeutic options against 
Mn-induced CNS injury (e.g., in cirrhotic patients).
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Abstract

Purpose: Manganese (Mn) is a neurotoxic chemical which induces a wide range of complications 
in the brain tissue. Impaired locomotor activity and cognitive dysfunction are associated 
with high brain Mn content. At the cellular level, mitochondria are potential targets for Mn 
toxicity. Carnosine is a dipeptide abundantly found in human brain. Several pharmacological 
properties including mitochondrial protecting and antioxidative effects have been attributed to 
carnosine. The current study aimed to evaluate the effect of carnosine treatment on Mn-induced 
mitochondrial dysfunction in isolated brain mitochondria. 
Methods: Mice brain mitochondria were isolated based on the differential centrifugation method 
and exposed to increasing concentrations of Mn (10 µM-10 mM). Carnosine (1 mM) was added 
as the protective agent. Mitochondrial indices including mitochondrial depolarization, reactive 
oxygen species (ROS) formation, mitochondrial dehydrogenases activity, ATP content, and 
mitochondrial swelling and permeabilization were assessed. 
Results: Significant deterioration in mitochondrial indices were evident in Mn-exposed brain 
mitochondria. On the other hand, it was found that carnosine (1 mM) treatment efficiently 
prevented Mn-induced mitochondrial impairment.
Conclusion: These data propose mitochondrial protection as a fundamental mechanism for the 
effects of carnosine against Mn toxicity. Hence, this peptide might be applicable against Mn 
neurotoxicity with different etiologies (e.g., in cirrhotic patients).
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Material and Methods
Chemicals
Carnosine was purchased from Sigma (St. Louis, MO, USA). 
4,2-Hydroxyethyl,1-piperazineethanesulfonic acid (HEPES), 
3-(N-morpholino) propane sulfonic acid (MOPS), Dimethyl 
sulfoxide (DMSO), D-mannitol, bovine serum albumin 
(BSA), thiobarbituric acid (TBA), 3-[4,5dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide (MTT), Coomassie 
brilliant blue, Rhodamine 123 (Rh 123), Ethylene glycol-
bis (2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid 
(EGTA), Sodium succinate, Hydroxymethyl aminomethane 
hydrochloride (Tris-HCl), and ethylenediaminetetraacetic 
acid (EDTA) were purchased from Merck (Darmstadt, 
Germany). All salts for preparing buffer solutions (analytical 
grade) were purchased from Merck (Darmstadt, Germany).

 
Animals
Male BALB/c mice (20-30 g) were obtained from Animal 
Breeding Center of Shiraz University of Medical Sciences, 
Shiraz Iran. Animals were housed in plastic cages on 
wood-chip bedding at an ambient temperature of 23±2°C 
and relative humidity of ≈40%. Mice had free access to tap 
water and a standard rodent’s diet (Behparvar®, Tehran, 
Iran). Animals were handled according to the animal 
handling protocol approved by a local ethics committee 
at Shiraz University of Medical Sciences, Shiraz, Iran (01-
36-15296).

Brain mitochondria isolation
Mice brain mitochondria were isolated as previously 
described.33 Briefly, animals were anesthetized (ketamine/
xylazine, 60/5 mg/kg, i.p) and their brain tissue was 
isolated and washed with ice-cold sodium chloride 
(Saline 0.9% w: v).33,34 The brain was homogenized in 
the mitochondria isolation buffer (70 mM mannitol, 220 
mM Sucrose, 0.5 mM EGTA, 0.1% essentially fatty acid-
free BSA, 2 mM HEPES, pH = 7.4) at a 10:1 w: v buffer 
to brain tissue ratio.33 Afterward, the tissue homogenate 

Figure 1. Schematic representation of the disturbances in manganese (Mn) 
excretion during cirrhosis, Mn-induced mitochondrial dysfunction, and 
the potential protective properties of carnosine.

was centrifuged at 1000×g for 10 minutes at 4°C to remove 
intact cells and nuclei. The supernatants were further 
centrifuged (15 000×g, 4°C, 10 minutes) to precipitate 
the heavy membrane fractions (mitochondria).35 This 
step was repeated (at least three times) using fresh buffer 
medium to increase mitochondria yield. As mentioned, all 
manipulations for brain mitochondria isolation were done 
at 4°C or on ice to preserve mitochondrial intactness.33

Mitochondrial swelling
Mitochondrial swelling was assessed based on the light 
scattering method as previously described.33 The isolated 
mitochondria (0.5 mg protein/mL) were suspended 
in the swelling buffer (125 mM Sucrose, 65 mM KCl, 
10 mM HEPES, pH = 7.2). The light absorbance at λ = 
540 nm was monitored (Constant temperature of 30°C) 
with a FLUOstar Omega® (BMG Labtech, Germany) 
multifunctional microplate reader.33,36,37 It is accepted that 
decreased light absorbance is coherent to an increase in 
mitochondrial volume.37 Therefore, as mitochondria are 
more swelled, the differences between light absorbance of 
two-time points are higher. The differences between the 
absorbance of samples were assessed at λ = 540 nm and 
reported as maximal mitochondrial swelling amplitude 
(ΔOD540 nm).33

Mitochondrial depolarization
Mitochondrial uptake of the cationic fluorescence 
dye rhodamine 123 was used for the estimation of 
mitochondrial depolarization.33,38-40 For this purpose, the 
mitochondrial fractions (1 mg protein/mL) were incubated 
with rhodamine 123 (Final concentration 10 µM) in a 
buffer containing 125 mM Sucrose, 65 mM KCl, 10 mM 
HEPES, pH = 7.2 (20 minutes, 37°C, in the dark).37,38 
Then, samples were centrifuged (15 000 g, 5 minutes, 
4°C) and the fluorescence intensity of the supernatant was 
measured using a multifunctional fluorescent microplate 
reader (FLUOstar Omega®, BMG Labtech, Germany; λ 
excitation = 485 nm and λ emission = 525 nm).33,41

Reactive oxygen species in isolated mitochondria
The fluorescent probe dichlorofluorescein diacetate 
(DCFH-DA) was used to evaluate the mitochondrial ROS 
measurement.33,42,43 Briefly, isolated brain mitochondria 
were incubated in the respiration buffer (125 mM Sucrose, 
5 mM Sodium succinate, 65 mM KCl, 10 mM HEPES, 20 
µM Ca2+, and pH = 7.2).33 Following this step, DCFH-
DA was added (final concentration, 10 μM) and samples 
were incubated for 30 minutes (37°C, in the dark). 
Then, the fluorescence intensity of DCF was measured 
using a FLUOstar Omega® (BMG Labtech, Germany) 
multifunctional fluorimeter (λ excitation = 485 nm and 
λ emission = 525 nm).33

Mitochondrial ATP content
A luciferase-luciferin-based kit from Promega 
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(ENLITEN®) was used to assess mitochondrial ATP 
content.44 Samples and buffer solutions were prepared 
based on the kit instructions, and the luminescence 
intensity of samples was measured at λ = 560 nm 
using a FLUOstar Omega® (BMG Labtech, Germany) 
multifunctional microplate reader. For standardization of 
data, samples protein concentrations were determined by 
the Bradford method.45

Statistical analysis
Data are given as the mean±SD. Data comparison was 
performed by the one-way analysis of variance (ANOVA) 
with Tukey’s multiple comparison test as the post hoc. 
Differences were considered statistically significant when 
P < 0.05.

Results
Brain mitochondria exposure to Mn was associated with 
decreased mitochondrial indices of functionality. Severe 
decrease in mitochondrial dehydrogenases activity 
was detected in Mn-treated mitochondria (Figure 2). 
It was found that pre-incubation of mice brain isolated 
mitochondria with carnosine (1 mM) significantly 
prevented Mn-induced decrease in mitochondrial 
dehydrogenases activity (Figure 2). As 100 µM 
concentration of carnosine was not effective against a high 
dose of Mn (Figure 2), higher concentration (1 mM) of 
the peptide was selected for further assessments.

Significant mitochondrial permeability and swelling 
were evident in Mn-exposed isolated brain mitochondria 
as assessed by the light scattering method (Figure 3). On 
the other hand, it was found that carnosine treatment (1 
mM) significantly mitigated Mn-induced mitochondrial 
permeabilization and swelling (Figure 3).

The collapse of mitochondrial membrane potential 
was another adverse effect of Mn on isolated mice brain 
mitochondria (Figure 4). Mn-induced mitochondrial 
depolarization was revealed by a decrease in mitochondrial 
capacity of rhodamine 123 capture (Figure 4). It was found 
that carnosine treatment (1 mM) significantly prevented 
Mn-induced mitochondrial depolarization (Figure 4).

Evaluation of reactive oxygen species (ROS) in Mn-
treated mice brain mitochondria revealed a significant 
increase in DCF fluorescent intensity (Figure 5). On the 
other hand, carnosine administration (1 mM) significantly 
ameliorated Mn-induced ROS formation in isolated brain 
mitochondria (Figure 5).

Significant depletion of mitochondrial ATP content 
was also detected in Mn-treated mice brain mitochondria 
(Figure 6). It was found that carnosine (1 mM) 
supplementation preserved mitochondrial ATP content 
at a higher level in comparison with Mn-exposed group 
(Figure 6).

Discussion
The primary object of the current investigation was to 

Figure 2. Mitochondrial dehydrogenases activity (MTT assay) in the presence of manganese (Mn) and carnosine. Data are given as mean ± SD (n = 8). 
Asterisks indicate significantly different as compared with control (0 mM manganese) group (**P < 0.01, ***P < .001). a Indicate significantly different as 
compared with manganese (Mn) group (P < 0.001).
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search the effect of carnosine treatment on Mn-induced 
mitochondrial dysfunction. The data obtained from this 
study might help to develop therapeutic options against 
cirrhosis and its associated complications as well as Mn-
induced neurotoxicity with different etiologies.

Several liver diseases including chronic liver injury 
and cirrhosis are associated with brain tissue Mn 
deposition (Figure 1).9,46,47 Environmental Mn exposure 
could also result in neurodegenerative disorders.48,49 Mn 
is a neurotoxic trace element which adversely affects 
locomotor and cognitive function.47,50 Severe changes in 
the concentration of different neurotransmitters have 
been documented in Mn-exposed animals.51 On the other 
hand, at the cellular level mitochondria are potential 
targets of Mn toxicity.4,5,15,16,20,52-54 Hence, mitochondria 
protecting agents might serve as potential therapeutic 
options against Mn cytotoxicity (Figure 1). In the current 
study, Mn exposure concentration-dependently enhanced 
mitochondrial dysfunction. On the other hand, it was 
found that carnosine (1 mM) supplementation efficiently 

mitigated Mn-induced impairment of mitochondrial 
function in isolated mice brain mitochondria.

It is well-established that Mn accumulates in 
the mitochondrial matrix, interrupts oxidative 
phosphorylation, and inhibits energy (ATP) 
metabolism.13,18,19 On the other hand, the alteration in 
mitochondrial permeability transition induced by Mn 
leads to mitochondrial swelling and release of several 
cell death mediators from this organelle.13,18,19 Inhibition 
of mitochondrial electron transport chain has also been 
mentioned in Mn-exposed mitochondria.13,18,19 Therefore, 
protecting cellular mitochondria could serve as a potential 
therapeutic strategy against Mn cytotoxicity (Figure 1).

The involvement of carnosine in the regulation of 
mitochondrial function has been previously mentioned in 
different experimental models.28,29,31,55 Carnosine regulates 
mitochondrial matrix pH, preserves mitochondrial 
membrane potential, increases the activity of the 
respiratory chain complexes, and enhances mitochondrial 
energy production.29,56-59 The anti-apoptotic properties 

Figure 3. Manganese (Mn)-induced mitochondrial swelling in the presence of carnosine.
Data are given as Mean±SD (n = 8). Asterisks indicate significantly different as compared with control (Manganese 0 mM) (*P < 0.1, **P < 0.01, ***P< 
0.001). a Indicates significantly different as compared with manganese alone (P < 0.05). ns: not significant as compared with similar dosage of the Mn-
treated group.

Figure 4. Mitochondrial depolarization in manganese (Mn)-treated 
brain mitochondria. Data are given as mean ± SD (n = 8). *** Indicates 
significantly different as compared with control (P < 0.001). a Indicates 
significantly different as compared with the Mn-treated group (P < 0.001). 
ns: not significant as compared with the similar dose of the Mn-treated 
group.

Figure 5. Mn-induced reactive oxygen species (ROS) formation in isolated 
mice brain mitochondria. Data are given as Mean±SD (n = 8). Asterisks 
indicate significantly different as compared with control (Manganese 
0 mM) (**P < 0.01, ***P < 0.001). a Indicates significantly different as 
compared with the similar dose of Mn-treated group (P < 0.001). 
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of carnosine also have been mentioned in several 
investigations.30,58,59 All these properties make carnosine as 
an effective mitochondrial protecting agent and indicate 
that this peptide could be a potential safe therapeutic 
option against a wide range of mitochondrial-linked 
complications (Figure 1). 

Our previous findings mentioned that carnosine 
administration efficaciously alleviated chronic liver injury 
and its associated complications.30,60 The motor deficit is 
one of the significant features of cirrhosis and chronic 
hepatic encephalopathy.61,62 Muscle stiffness, poor muscle 
coordination, rigidity, and tremor are observed in cirrhotic 
patients.61 On the other hand, a several-fold increase in 
the plasma and brain Mn level of cirrhotic patients has 
been established.11,63 Hence, increased brain Mn levels 
could be associated with CNS damage in cirrhotic patients 
(Figure 1). As mentioned, brain Mn accumulation is a 
complication related to liver failure and cirrhosis.11,63 The 
results of this study suggest that carnosine not only provide 
beneficial effects against cirrhosis, hyperammonemia, 
and tissue fibrosis,30,60 but also might prevent Mn-induced 
mitochondrial dysfunction and protect the CNS in 
cirrhosis.

Mitochondria are the most critical intracellular sites 
of ROS formation.64 It has been well-established that 
superoxide anion (O2

.-) and hydrogen peroxide (H2O2) 
are produced during mitochondrial respiration.64 On the 
other hand, mitochondria-mediated ROS formation could 
be enhanced by xenobiotics.65,66 The data obtained in the 
current study revealed that exposure of brain mitochondria 
to Mn hasten ROS formation in this organelle (Figure 4). 
Meanwhile, carnosine (1 mM) mitigated Mn-induced 
ROS formation (Figure 4). The antioxidant and ROS 
scavenging properties of carnosine have repeatedly been 
mentioned in previous investigations.22,23,26,55 It has been 
established that this peptide possesses antioxidant effects 

Figure 6. Mitochondrial ATP content. Data are given as Mean±SD (n = 
8). Asterisks indicate significantly different as compared with control 
(Manganese 0 mM) (*P < 0.1, ***P < 0.001). a Indicates significantly 
different as compared with the similar dose of manganese alone (P < 
0.05). ns: not significant as compared with the Mn-treated group.

in different experimental models.22,23,25,26,55,60 Carnosine 
also efficiently scavenges reactive end products of 
oxidative stress.67 Hence, another important mechanism 
of protective properties of carnosine could be mediated 
through its antioxidant properties and decrease of 
mitochondria-born ROS (Figure 1).

The data obtained in the current study might 
help developing safe, protective agents against Mn 
neurotoxicity which is involved in the pathogenesis of 
cirrhosis-associated CNS complications. Indeed, further 
research on the effect of carnosine on mitochondrial 
respiratory complexes as well as the mPT components 
will enhance our understanding of the mitochondrial 
protecting properties of this naturally occurring peptide. 
On the other hand, carnosine could be considered as a 
promising pharmacological intervention in attenuating 
Mn-induced neurotoxicity with different etiologies (e.g., 
cirrhosis).
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