Logo-apb
Adv Pharm Bull. 2014;4(1): 55-60.
doi: 10.5681/apb.2014.009
PMID: 24409410
PMCID: PMC3885370
Scopus ID: 84892465978
  Abstract View: 1239
  PDF Download: 670

Original Research

Nucleostemin depletion induces post-G1 arrest apoptosis in chronic myelogenous leukemia K562 cells

Negin Gogani 1, Marveh Rahmati 2, Nosratollah Zarghami 2,3, Iraj Asvadi-Kermani 3, Mohammad Ali Hoseinpour-Feyzi 1, Mohammad Amin Moosavi 1,3,4*

1 Department of Zoology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
2 Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
3 Hematology and Oncology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
4 National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
*Corresponding Author: Email: a-moosavi@nigeb.ac.ir

Abstract

Abstract   Purpose: Despite significant improvements in treatment of chronic myelogenous leukemia (CML), the emergence of leukemic stem cell (LSC) concept questioned efficacy of current therapeutical protocols. Remaining issue on CML includes finding and targeting of the key genes responsible for self-renewal and proliferation of LSCs. Nucleostemin (NS) is a new protein localized in the nucleolus of most stem cells and tumor cells which regulates their self-renewal and cell cycle progression. The aim of this study was to investigate effects of NS knocking down in K562 cell line as an in vitro model of CML. Methods: NS gene silencing was performed using a specific small interfering RNA (NS-siRNA). The gene expression level of NS was evaluated by RT-PCR. The viability and growth rate of K562 cells were determined by trypan blue exclusion test. Cell cycle distribution of the cells was analyzed by flow cytometry. Results: Our results showed that NS knocking down inhibited proliferation and viability of K562 cells in a time-dependent manner. Cell cycle studies revealed that NS depletion resulted in G1 cell cycle arrest at short times of transfection (24 h) followed with apoptosis at longer times (48 and 72 h), suggest that post-G1 arrest apoptosis is occurred in K562 cells. Conclusion: Overall, these results point to essential role of NS in K562 cells, thus, this gene might be considered as a promising target for treatment of CML.
First Name
Last Name
Email Address
Comments
Security code


Abstract View: 1240

Your browser does not support the canvas element.


PDF Download: 670

Your browser does not support the canvas element.

Submitted: 28 Aug 2013
Revision: 21 Sep 2013
ePublished: 23 Dec 2013
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)