Logo-apb
Adv Pharm Bull. 2018;8(2): 291-296.
doi: 10.15171/apb.2018.034
PMID: 30023331
PMCID: PMC6046427
Scopus ID: 85048866932
  Abstract View: 1791
  PDF Download: 1552

Research Article

The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34+ Cells

Davod Pashoutan Sarvar 1, Mohammad Hossein Karimi 2, Aliakbar Movassaghpour 3, Parvin Akbarzadehlaleh 4, Sara Aqmasheh 1, Hamze Timari 1, Karim Shamsasenjan 1*

1 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
2 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
3 Hematology & Blood Banking, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
4 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
*Corresponding Author: Email: shamsk@tbzmed.ac.ir

Abstract

Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis.
First Name
Last Name
Email Address
Comments
Security code


Abstract View: 1792

Your browser does not support the canvas element.


PDF Download: 1552

Your browser does not support the canvas element.

Submitted: 23 Aug 2017
Revision: 14 May 2018
Accepted: 20 May 2018
ePublished: 19 Jun 2018
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)