Fereshteh Morrovati
1, Nahid Karimian Fathi
2, Jafar Soleimani Rad
1, Azadeh Montaseri
1*1 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
2 Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Abstract
Purpose: In Persian traditional medicine, application of Mummy material has been advised since hundred years ago for treatment of different diseases as bone fracture, cutaneous wounds and joint inflammation. Regarding to the claim of indigenous people for application of this material in the treatment of joint inflammation, the present study was designed to evaluate whether Mummy can revoke the inflammatory responses in chondrocytes stimulated with interleukin 1-β (IL-1β). Methods: Isolated chondrocytes at the second passage were plated in 50 ml conical tubes at density of 1x106 for pellet culture or were plated in T75 culture flasks as monolayer. Cells in both groups were treated as control (receiving serum free culture medium), negative control (receiving IL-1β (10ng/ml for 24 hr)) and IL-1β pre-stimulated cells which treated with Mummy at concentrations of 500 and 1000µg/ml for 72hrs. After 72 hrs, to evaluate whether Mummy can revoke the inflammatory response in chondrocytes, cell in different groups were prepared for investigation of gene expression profile of collagen II, Cox-2, MMP-13, C-Rel and P65 using real-time RT-PCR. Results: Treatment of chondrocytes with IL-1β (10ng/ml) resulted in a significant increase in expression level of Cox-2, MMP-13, C-Rel and P65 in pellet culture system, while treatment of IL-1β-stimulated choncrocytes with Mummy at both concentrations of 500 and 1000µg/ml inhibited the expression level of above mentioned genes. Compared to the pellet culture, Mummy did not affect expression level of genes in monolayer condition. Conclusion: The obtained data from this investigation revealed that Mummy can be used as a potent factor for inhibiting the inflammatory responses induced by IL-1β in chondrocytes probably through inhibition of NF-қB subunits activation.