Abstract
Purpose: In this work, the potential usefulness of silver nanoparticles (AgNPs) for treating burn wounds was examined.
Methods: Second-degree burns were induced in male Wistar rats by touching the skin with a heated (70°C) metallic device for 10 s, after which the animals were randomly allocated to one of two groups: control (n=8, treated with sterile saline) and experimental (n=8, treated with AgNPs, 0.081 mg/mL; 50 µL applied to the burn surface). Seven, 14, 21 and 28 days after lesion induction two rats from each group were killed and blood samples were collected for a complete blood count and to assess oxidative stress. The livers were examined macroscopically and skin samples were collected for histological analysis.
Results: Macroscopically, wound healing and skin remodeling in the experimental group were similar to the saline-treated rats. Likewise, there were no significant differences in the histological parameters between the two groups. However, treatment with AgNPs caused a persistent reduction in white blood cell (WBC) counts throughout the experiment, whereas platelet counts increased on days 7 and 28 but decreased on days 14 and 21; there was also an increase in the blood concentration of reduced glutathione on day 7 followed by a decrease on days 21 and 28. There were no significant changes in blood glutathione peroxidase (GSH-Px) and catalase (CAT) activities or in the serum concentration of thiobarbituric acid reactive substances.
Conclusion: The findings of this study raise questions about the potential transitory effects of AgNPs based on the changes in WBC and platelet counts, blood glutathione concentrations and macroscopic hepatic alterations.