Saba Mehrandish
1 , Shahla Mirzaeei
2,3* 1 Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
2 Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
3 Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
*Corresponding Author: Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. Email shahlamirzaeei@gmail.com
*Corresponding Author: *Corresponding Author: Shahla Mirzaeei, Tel: +988334266789, Fax: +988334266793, Email: smirzaeei@kums.ac.ir,, Email:
shahlamirzaeei@gmail.com
Abstract
Ocular fungal infections affect more than one million people annually worldwide. They can lead to impaired vision or even complete blindness, so they should be treated immediately to prevent such consequences. Although topical administration has always been the most common route of ocular drug delivery owing to high patient acceptance, reduced side effects, and the possibility of self-administration, its limited ocular bioavailability poses a major challenge. As a result, attention has recently been drawn to the design and development of novel drug delivery systems (NDDS) that can overcome the challenges of conventional dosage forms. This research is the first to review and classify the studies which have designed and developed topical ocular NDDS with the aim to compare the performance and antifungal activity of these novel systems with conventional forms. According to the results, all studies seemed to confirm the superiority of NDDS over conventional forms in cases of released and permeated drug and antifungal activity. The NDDS were used specifically to improve ocular delivery by slowing down the release rate, increasing drug permeation, and subsequently increasing the antifungal effects of the active pharmaceutical ingredients. Hence, further studies on NDDS may aid the optimization of ocular drug delivery of antifungal drugs.