Maryam Abdulmaged Oleiwi

, Ali Mohammad Al-Samydai
* 
, Aya Y. Al-Kabariti

, Khaldun Mohammad Al Azzam
* 
, Simone Carradori

, Walhan Alshaer
Abstract
Abstract Background and Purpose: Breast cancer is the leading cause of cancer-related deaths among women. Chemotherapy faces challenges such as systemic toxicity and multidrug resistance. Advances in nanotechnology have led researchers to develop safer and more efficient cancer treatment methods. Experimental Approach: The thin-film hydration method was employed to synthesize PEGylated nanoliposomes (NLs) loaded with raloxifene (RLX) and a combination of RLX and rutin. The NLs were characterized using a Zetasizer® instrument, transmission electron microscopy (TEM), and high-performance liquid chromatography (HPLC) analysis. The encapsulation of RLX and rutin was confirmed, and cell viability assays were conducted against breast cancer and normal endothelial cell lines. Key Results: The encapsulation efficiency significantly increased in the mixed formulation, with RLX reaching 91.28% and rutin 78.12%, indicating successful encapsulation. These NLs remained stable for up to two months at room temperature and one month at 4°C, demonstrating a biphasic release pattern. After 24 hours, approximately 17% of RLX was released from the NLs and 25% from the mixed NLs. In contrast, 55% of rutin was released from the NLs and 70.4% from the mixed NLs within 72 hours. The inclusion of rutin or RLX in the liposomal formulation reduced cytotoxicity against breast cancer cell lines, as indicated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. However, it improved safety in normal human cells and tissues. Conclusion: PEGylated NLs loaded with RLX and rutin demonstrated safe anti-breast cancer effects, outperforming mixed NLs, suggesting the potential for a safer and more targeted treatment. Further investigations are needed into clinical translation.