Adv Pharm Bull. 2017;7(3): 479-483. doi: 10.15171/apb.2017.058
PMID: 29071232        PMCID: PMC5651071

Short Communication

Vancomycin Capped with Silver Nanoparticles as an Antibacterial Agent against Multi-Drug Resistance Bacteria

Mahsa Esmaeillou 1, Gholamreza Zarrini 1 * , Mohammad Ahangarzadeh Rezaee 2, Javid Shahbazi mojarrad 3, Ali Bahadori 4

Cited by CrossRef: 51

1- Dedman C. Nano-ecotoxicology in a changing ocean. SN Appl Sci. 2022;4(10) [Crossref]
2- Swolana D, Kępa M, Idzik D, Dziedzic A, Kabała-Dzik A, Wąsik T, Wojtyczka R. The Antibacterial Effect of Silver Nanoparticles on Staphylococcus Epidermidis Strains with Different Biofilm-Forming Ability. Nanomaterials. 2020;10(5):1010 [Crossref]
3- Hemmati J, Azizi M, Asghari B, Arabestani M, Pati S. Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles). Canadian Journal of Infectious Diseases and Medical Microbiology. 2023;2023:1 [Crossref]
4- Romo-Quiñonez C, Álvarez-Sánchez A, Álvarez-Ruiz P, Chávez-Sánchez M, Bogdanchikova N, Pestryakov A, Mejia-Ruiz C. Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimpLitopenaeus vannameiagainst White Spot Syndrome Virus infection. 2020;8:e8446 [Crossref]
5- Crisan C, Mocan T, Manolea M, Lasca L, Tăbăran F, Mocan L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Applied Sciences. 2021;11(3):1120 [Crossref]
6- Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon. 2023;9(11):e22105 [Crossref]
7- Goyal B, Verma N, Kharewal T, Gahlaut A, Hooda V. Structural effects of nanoparticles on their antibacterial activity against multi-drug resistance. Inorganic and Nano-Metal Chemistry. 2022;:1 [Crossref]
8- El-Sheekh M, Hassan L, Morsi H. Evaluation of antimicrobial activities of blue-green algae-mediated silver and gold nanoparticles. Rend Fis Acc Lincei. 2021;32(4):747 [Crossref]
9- Lotlikar S, Gallaway E, Grant T, Popis S, Whited M, Guragain M, Rogers R, Hamilton S, Gerasimchuk N, Patrauchan M. Polymeric Composites with Silver (I) Cyanoximates Inhibit Biofilm Formation of Gram-Positive and Gram-Negative Bacteria. Polymers. 2019;11(6):1018 [Crossref]
10- Nagababu U, Shanmukha Kumar J, Rafi Shaik M, Sharaf M. Facile synthesis, physiochemical characterization and bio evaluation of sulfadimidine capped cobalt nanoparticles. Saudi Journal of Biological Sciences. 2021;28(4):2168 [Crossref]
11- Ghaderi R, Kazemi M, Soleimanpour S. Nanoparticles are More Successful Competitor than Antibiotics in Treating Bacterial Infections: A Review of the Literature. Iran J Med Microbiol. 2021;15(1):18 [Crossref]
12- Huang W, Wang J, Wang Z, Yu H. Synergistic antimicrobial activity of silver nanoparticles combined with streptomycin sulfate against gram-negative and gram-positive bacteria. Molecular Crystals and Liquid Crystals. 2021;714(1):80 [Crossref]
13- Anh N, Doan M, Dinh N, Huy T, Tri D, Ngoc Loan L, Van Hao B, Le A. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv. 2022;12(18):10950 [Crossref]
14- Baptista P, McCusker M, Carvalho A, Ferreira D, Mohan N, Martins M, Fernandes A. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front Microbiol. 2018;9 [Crossref]
15- Kumar S, Verma A, Singh S, Awasthi A. Immunostimulants for shrimp aquaculture: paving pathway towards shrimp sustainability. Environ Sci Pollut Res. 2022;30(10):25325 [Crossref]
16- Ciftci N, Sargin I, Arslan G, Karakurt S, Arslan U. Investigation of In Vitro Antimicrobial and Cytotoxic Effects of Gold Nanoparticles Capped with Meropenem and Imipenem . Nanomedicine (Lond). 2023;18(24):1719 [Crossref]
17- Modi S, Gaur S, Sengupta M, Singh M. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol. 2023;14 [Crossref]
18- Adeniji O, Ojemaye M, Okoh A. Antibacterial Activity of Metallic Nanoparticles against Multidrug-Resistant Pathogens Isolated from Environmental Samples: Nanoparticles/Antibiotic Combination Therapy and Cytotoxicity Study. ACS Appl Bio Mater. 2022;5(10):4814 [Crossref]
19- Pothineni B, Keller A. Nanoparticle‐Based Formulations of Glycopeptide Antibiotics: A Means for Overcoming Vancomycin Resistance in Bacterial Pathogens?. Advanced NanoBiomed Research. 2023;3(4) [Crossref]
20- Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep. 2019;9(1) [Crossref]
21- Steckiewicz K, Cieciórski P, Barcińska E, Jaśkiewicz M, Narajczyk M, Bauer M, Kamysz W, Megiel E, Inkielewicz-Stepniak I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. IJN. 2022;Volume 17:495 [Crossref]
22- Tigabu B, Getachew A. Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects. Ann Adv Chem. 2022;6(1):001 [Crossref]
23- Gonçalves S, Martins I, Santos N. Nanoparticle‐peptide conjugates for bacterial detection and neutralization: Potential applications in diagnostics and therapy. WIREs Nanomed Nanobiotechnol. 2022;14(6) [Crossref]
24- Khan A, Manzoor K, Sultan A, Saeed M, Rafique M, Noushad S, Talib A, Rentschler S, Deigner H. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. IJMS. 2021;22(2):859 [Crossref]
25- Bekele T, Alamnie G, Girma A, Mebratie G. Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects. Bioinspired, Biomimetic and Nanobiomaterials. 2023;12(4):153 [Crossref]
26- Diéguez-Santana K, González-Díaz H. Towards machine learning discovery of dual antibacterial drug–nanoparticle systems. Nanoscale. 2021;13(42):17854 [Crossref]
27- Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat A. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials. 2021;11(8):2086 [Crossref]
28- Soni K, Jyoti K, Chandra H, Chandra R. Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy. Bioresource Technology Reports. 2022;19:101080 [Crossref]
29- Jiang G, Liu S, Yu T, Wu R, Ren Y, van der Mei H, Liu J, Busscher H. PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. Acta Biomaterialia. 2021;123:230 [Crossref]
30- Pebdeni A, AL-Baiati M, Hosseini M. New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water. Beilstein J Nanotechnol. 2024;15:95 [Crossref]
31- Ajose D, Abolarinwa T, Oluwarinde B, Montso P, Fayemi O, Aremu A, Ateba C. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines. 2022;10(10):2426 [Crossref]
32- Veriato T, Fontoura I, Oliveira L, Raniero L, Castilho M. Nano-antibiotic based on silver nanoparticles functionalized to the vancomycin–cysteamine complex for treating Staphylococcus aureus and Enterococcus faecalis. Pharmacol Rep. 2023;75(4):951 [Crossref]
33- Naskar A, Kim K. Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms. 2019;7(9):356 [Crossref]
34- El-Sheekh M, Morsi H, Hassan L, Ali S. The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiological Research. 2022;263:127111 [Crossref]
35- Rizvi S, Lila A, Moin A, Hussain T, Kamal M, Sonbol H, Khafagy E. Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics. 2023;15(2):430 [Crossref]
36- Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Critical Reviews in Microbiology. 2024;:1 [Crossref]
37- Vazquez-Muñoz R, Arellano-Jimenez M, Lopez F, Lopez-Ribot J. Protocol optimization for a fast, simple and economical chemical reduction synthesis of antimicrobial silver nanoparticles in non-specialized facilities. BMC Res Notes. 2019;12(1) [Crossref]
38- Salah N, Saafan A, Salem E, El Rabey H, Alsieni M, Alatawi F, Alalawy A, Abeer Mohammed A, Omri A. Inhibition of the Vancomycin Resistance in Staphylococcus aureus in Egypt Using Silver Nanoparticles. BioMed Research International. 2022;2022:1 [Crossref]
39- Vazquez-Munoz R, Arellano-Jimenez M, Lopez-Ribot J. Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against Staphylococcus aureus and Candida albicans. BMC biomed eng. 2020;2(1) [Crossref]
40- Elsawy S, Elsherif W, Hamed R. Effect of silver nanoparticles on vancomycin resistant Staphylococcus aureus infection in critically ill patients. Pathogens and Global Health. 2021;115(5):315 [Crossref]
41- Rabiee N, Ahmadi S, Akhavan O, Luque R. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials. 2022;15(5):1799 [Crossref]
42- Möhler J, Sim W, Blaskovich M, Cooper M, Ziora Z. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnology Advances. 2018;36(5):1391 [Crossref]
43- Adeniji O, Nontongana N, Okoh J, Okoh A. The Potential of Antibiotics and Nanomaterial Combinations as Therapeutic Strategies in the Management of Multidrug-Resistant Infections: A Review. IJMS. 2022;23(23):15038 [Crossref]
44- Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris S. Nanobiosystems for Antimicrobial Drug-Resistant Infections. Nanomaterials. 2021;11(5):1075 [Crossref]
45- Mohamed M, Mostafa H, Mohamed S, Abd El-Moez S, Kamel Z. Combination of Silver Nanoparticles and Vancomycin to Overcome Antibiotic Resistance in Planktonic/Biofilm Cell from Clinical and Animal Source. Microbial Drug Resistance. 2020;26(11):1410 [Crossref]
46- Ural M, Menéndez-Miranda M, Salzano G, Mathurin J, Aybeke E, Deniset-Besseau A, Dazzi A, Porcino M, Martineau-Corcos C, Gref R. Compartmentalized Polymeric Nanoparticles Deliver Vancomycin in a pH-Responsive Manner. Pharmaceutics. 2021;13(12):1992 [Crossref]
47- Pardhi D, Şen Karaman D, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron P, Tambuwala M, Bakshi H, Negi P, Aljabali A, Dua K, Chellappan D, Behera A, Pathak K, Watharkar R, Rautio J, Rosenholm J. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International Journal of Pharmaceutics. 2020;586:119531 [Crossref]
48- Diéguez-Santana K, Rasulev B, González-Díaz H. Towards rational nanomaterial design by predicting drug–nanoparticle system interaction vs. bacterial metabolic networks. Environ Sci: Nano. 2022;9(4):1391 [Crossref]
49- Algharib S, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis . Drug Delivery. 2020;27(1):292 [Crossref]
50- Ahghari M, Ahghari M, Kamalzare M, Maleki A. Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO3 bionanocomposite and study its antibacterial activity. Sci Rep. 2022;12(1) [Crossref]