Logo-apb
Adv Pharm Bull. 2018;8(2): 225-233. doi: 10.15171/apb.2018.027
PMID: 30023324        PMCID: PMC6046417

Research Article

Preparation and Statistical Modeling of Solid Lipid Nanoparticles of Dimethyl Fumarate for Better Management of Multiple Sclerosis

Smriti Ojha 1 * , Babita Kumar 2

Cited by CrossRef: 15


1- Mwema A, Muccioli G, des Rieux A. Innovative drug delivery strategies to the CNS for the treatment of multiple sclerosis. Journal of Controlled Release. 2023;364:435 [Crossref]
2- Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS Appl Bio Mater. 2020;3(10):6571 [Crossref]
3- Moura R, Sarmento B. Therapeutic Approaches toward Multiple Sclerosis: Where Do We Stand and Where Are We Headed?. Advanced Therapeutics. 2019;2(10) [Crossref]
4- Cunha S, Costa C, Moreira J, Sousa Lobo J, Silva A. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomedicine: Nanotechnology, Biology and Medicine. 2020;28:102206 [Crossref]
5- Patel D, Patel M, Soni T, Suhagia B. Topical arginine solid lipid nanoparticles: Development and characterization by QbD approach. Journal of Drug Delivery Science and Technology. 2021;61:102329 [Crossref]
6- Mishra S, Kumari S, Mishra A, Chaubey R, Ojha S. Carbon Nanotube – Synthesis, Purification and Biomedical Applications. CNM. 2023;8(4):328 [Crossref]
7- Mehdi-alamdarlou S, Ahmadi F, Azadi A, Shahbazi M, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. International Journal of Pharmaceutics. 2022;625:122084 [Crossref]
8- Rawat R, Chouhan R, Sadhu V, Sharma M. Clarithromycin-Loaded Submicron-Sized Carriers: Pharmacokinetics and Pharmacodynamic Evaluation. Materials. 2023;16(9):3593 [Crossref]
9- Gadhave D, Sugandhi V, Kokare C. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Research. 2024;1822:148674 [Crossref]
10- Rahiman N, Mohammadi M, Alavizadeh S, Arabi L, Badiee A, Jaafari M. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. Journal of Controlled Release. 2022;343:620 [Crossref]
11- khosravi S, Bardania H, Mansouri R, Tahoori M, Ghafari F, mohammadzadeh A, Fouani M, Pourfathollah A, Soleimani M. Switch off inflammation in spleen cells with CD40-targeted PLGA nanoparticles containing dimethyl fumarate. Colloids and Surfaces B: Biointerfaces. 2021;208:112091 [Crossref]
12- van Schaik P, Zuhorn I, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. IJMS. 2022;23(15):8418 [Crossref]
13- Cai J, Zhong H, Huang X, Luo J, Li P. Temperature/pH/reduction-sensitive multiple stimulus-responsive nanogels synthesized by one-pot method for design as curcumin carriers. European Polymer Journal. 2024;210:112961 [Crossref]
14- Ngowi E, Wang Y, Qian L, Helmy Y, Anyomi B, Li T, Zheng M, Jiang E, Duan S, Wei J, Wu D, Ji X. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol. 2021;9 [Crossref]
15- Teixeira M, Lopes C, Amaral M, Costa P. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. European Journal of Pharmaceutics and Biopharmaceutics. 2020;149:192 [Crossref]
16- Ojha S, Yadav S, Yadav A, Aggarwal B, Gupta S, Mishra S. Considering the Conception of Nanotechnology Integrated on Herbal Formulation for the Management of Cancer. LDDD. 2023;20(10):1437 [Crossref]
17- Wang Z, Gonzalez K, Cordova L, Lu J. Nanotechnology‐empowered therapeutics targeting neurodegenerative diseases. WIREs Nanomed Nanobiotechnol. 2023;15(5) [Crossref]