Logo-apb
Adv Pharm Bull. 2015;5(4): 455-461. doi: 10.15171/apb.2015.062
PMID: 26819916        PMCID: PMC4729350

Original Research

Effects of Environmental Factors on Soluble Expression of a Humanized Anti-TNF-α scFv Antibody in Escherichia coli

Mohammad Sina 1,2, Davoud Farajzadeh 2,3, Siavoush Dastmalchi 2,4 *

Cited by CrossRef: 22


1- Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol. 2022;10 [Crossref]
2- Wurm D, Hausjell J, Ulonska S, Herwig C, Spadiut O. Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains. Sci Rep. 2017;7(1) [Crossref]
3- Malekian R, Sima S, Jahanian-Najafabadi A, Moazen F, Akbari V. Improvement of soluble expression of GM-CSF in the cytoplasm of Escherichia coli using chemical and molecular chaperones. Protein Expression and Purification. 2019;160:66 [Crossref]
4- Sandomenico A, Sivaccumar J, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. IJMS. 2020;21(17):6324 [Crossref]
5- Li Q, Miao Z, Luo X, Zhao J, Song Y, Li Z, Zhou H, Zhang T, Mao L. Expression and bioactivity analysis of TNF30, a TNFα nanobody, inEscherichia coli. Biotechnology & Biotechnological Equipment. 2018;32(4):1036 [Crossref]
6- Cui X, Lu J, Wei J, Zhao S, Yan Y, Yin G, Wang B, Mu Y, Li P. Single-chain variable fragment-based immunoassay for bioactive natural products. Phytochem Rev. 2023; [Crossref]
7- Hashemi A, Basafa M, Behravan A. Machine learning modeling for solubility prediction of recombinant antibody fragment in four different E. coli strains. Sci Rep. 2022;12(1) [Crossref]
8- Perez-Riverol A, Campos Pereira F, Musacchio Lasa A, Romani Fernandes L, Santos-Pinto J, Justo-Jacomini D, Oliveira de Azevedo G, Bazon M, Palma M, Zollner R, Brochetto-Braga M. Molecular cloning, expression and IgE-immunoreactivity of phospholipase A1, a major allergen from Polybia paulista (Hymenoptera: Vespidae) venom. Toxicon. 2016;124:44 [Crossref]
9- Hausjell J, Kutscha R, Gesson J, Reinisch D, Spadiut O. The Effects of Lactose Induction on a Plasmid-Free E. coli T7 Expression System. Bioengineering. 2020;7(1):8 [Crossref]
10- Nuryana I, Laksmi F, Agustriana E, Dewi K, Andriani A, Thontowi A, Kusharyoto W, Lisdiyanti P. Expression of Codon-Optimized Gene Encoding Murine Moloney Leukemia Virus Reverse Transcriptase in Escherichia coli. Protein J. 2022;41(4-5):515 [Crossref]
11- Perez-Riverol A, Musacchio-Lasa A, Fernandes L, dos Santos-Pinto J, Esteves F, Bazon M, Zollner R, Palma M, Brochetto-Braga M. Improved production of the recombinant phospholipase A1 from Polybia paulista wasp venom expressed in bacterial cells for use in routine diagnostics. 3 Biotech. 2020;10(5) [Crossref]
12- Hausjell J, Weissensteiner J, Molitor C, Halbwirth H, Spadiut O. E. coli HMS174(DE3) is a sustainable alternative to BL21(DE3). Microb Cell Fact. 2018;17(1) [Crossref]
13- Wurm D, Quehenberger J, Mildner J, Eggenreich B, Slouka C, Schwaighofer A, Wieland K, Lendl B, Rajamanickam V, Herwig C, Spadiut O. Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli. Appl Microbiol Biotechnol. 2018;102(2):667 [Crossref]
14- Xu C, He D, Zu Y, Hong S, Hao J, Li J. Microcystin-LR heterologous genetically engineered antibody recombinant and its binding activity improvement and application in immunoassay. Journal of Hazardous Materials. 2021;406:124596 [Crossref]
15- Dewi K, Utami R, Hariyatun H, Pratiwi R, Agustiyanti D, Fuad A. The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3). Kor J Microbiol Biotechnol. 2021;49(2):148 [Crossref]
16- Akthar M, Shimokawa T, Wu Y, Arita T, Mizuta K, Isono Y, Maeda M, Ikeno S. Intermittent induction of LEA peptide by lactose enhances the expression of insecticidal proteins in Bacillus thuringiensis. FEBS Open Bio. 2022;12(8):1534 [Crossref]
17- Li L, Wu S, si Y, Li H, Yin X, Peng D. Single‐chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Comp Rev Food Sci Food Safe. 2022;21(5):4354 [Crossref]
18- Xu C, Zhang C, Zhong J, Hu H, Luo S, Liu X, Zhang X, Liu Y, Liu X. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies. J Agric Food Chem. 2017;65(29):6016 [Crossref]
19- Bhatwa A, Wang W, Hassan Y, Abraham N, Li X, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol. 2021;9 [Crossref]
20- Behravan A, Hashemi A. Statistical optimization of culture conditions for expression of recombinant humanized anti-EpCAM single-chain antibody using response surface methodology. 2021;16(2):153 [Crossref]
21- Yun H, Ueda H, Jeong H. Development of a Spacer-optimized Quenchbody against Tumor Necrosis Factor Alpha. Biotechnol Bioproc E. 2022;27(5):846 [Crossref]