Logo-apb
Adv Pharm Bull. 2016;6(2): 235-241. doi: 10.15171/apb.2016.032
PMID: 27478786        PMCID: PMC4961982

Research Article

Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles

Elham Nazemiyeh 1, Morteza Eskandani 2, Hossein Sheikhloie 1, Hossein Nazemiyeh 2,3 *

Cited by CrossRef: 54


1- Carvalho G, Sábio R, de Cássia Ribeiro T, Monteiro A, Pereira D, Ribeiro S, Chorilli M. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm Res. 2020;37(10) [Crossref]
2- Carvalho G, Marena G, Karnopp J, Jorge J, Sábio R, Martines M, Bauab T, Chorilli M. Cetyltrimethylammonium bromide in the synthesis of mesoporous silica nanoparticles: General aspects and in vitro toxicity. Advances in Colloid and Interface Science. 2022;307:102746 [Crossref]
3- Rehman A, Tong Q, Jafari S, Assadpour E, Shehzad Q, Aadil R, Iqbal M, Rashed M, Mushtaq B, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science. 2020;275:102048 [Crossref]
4- Kaur H, Kumar B, Chakrabarti A, Medhi B, Modi M, Radotra B, Aggarwal R, Sinha V. A New Therapeutic Approach for Brain Delivery of Epigallocatechin Gallate: Development and Characterization Studies. CDD. 2018;16(1):59 [Crossref]
5- Qi W, Sheng W, Peng C, Xiaodong M, Yao T. Investigating into anti-cancer potential of lycopene: Molecular targets. Biomedicine & Pharmacotherapy. 2021;138:111546 [Crossref]
6- Amorim A, Vasconcelos A, Souza J, Oliveira A, Gullón B, de Souza de Almeida Leite J, Pintado M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants. 2022;11(2):360 [Crossref]
7- Rostamabadi H, Falsafi S, Jafari S. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release. 2019;298:38 [Crossref]
8- Chung K, Ullah I, Kim N, Lim J, Shin J, Lee S, Jeon S, Kim S, Kumar P, Lee S. Intranasal delivery of cancer-targeting doxorubicin-loaded PLGA nanoparticles arrests glioblastoma growth. Journal of Drug Targeting. 2020;28(6):617 [Crossref]
9- Carvalho G, de Camargo B, de Araújo J, Chorilli M. Lycopene: From tomato to its nutraceutical use and its association with nanotechnology. Trends in Food Science & Technology. 2021;118:447 [Crossref]
10- Saad S, Ahmad I, Kawish S, Khan U, Ahmad F, Ali A, Jain G. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology. Colloids and Surfaces B: Biointerfaces. 2020;187:110628 [Crossref]
11- Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. Nanomaterials. 2020;10(11):2224 [Crossref]
12- Nsairat H, Lafi Z, Al-Sulaibi M, Gharaibeh L, Alshaer W. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chemistry. 2023;424:136438 [Crossref]
13- Ashraf W, Latif A, Lianfu Z, Jian Z, Chenqiang W, Rehman A, Hussain A, Siddiquy M, Karim A. Technological Advancement in the Processing of Lycopene: A Review. Food Reviews International. 2022;38(5):857 [Crossref]
14- Shejawal K, Randive D, Bhinge S, Bhutkar M, Wadkar G, Todkar S, Mohite S. Functionalized carbon nanotube for colon-targeted delivery of isolated lycopene in colorectal cancer: In vitro cytotoxicity and in vivo roentgenographic study. Journal of Materials Research. 2021;36(24):4894 [Crossref]
15- Li Y, Cui Z, Hu L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chemistry. 2023;405:134799 [Crossref]
16- Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin M, Tayebi L, Webster T. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition. 2022;62(13):3658 [Crossref]
17- Steiner B, McClements D, Davidov-Pardo G. Encapsulation systems for lutein: A review. Trends in Food Science & Technology. 2018;82:71 [Crossref]
18- Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. CDM. 2022;23(11):869 [Crossref]
19- Eskandani M, Eskandani M, Vandghanooni S, Navidshad B, Aghjehgheshlagh F, Nobakht A. Protective effect of l-carnitine-loaded solid lipid nanoparticles against H2O2-induced genotoxicity and apoptosis. Colloids and Surfaces B: Biointerfaces. 2022;212:112365 [Crossref]
20- Conte R, Marturano V, Peluso G, Calarco A, Cerruti P. Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. IJMS. 2017;18(4):709 [Crossref]
21- Kaur A, Gabrani R, Dang S. Nanoemulsions of Green Tea Catechins and Other Natural Compounds for the Treatment of Urinary Tract Infection: Antibacterial Analysis. Adv Pharm Bull. 2019;9(3):401 [Crossref]
22- Falsafi S, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari S. Lycopene nanodelivery systems; recent advances. Trends in Food Science & Technology. 2022;119:378 [Crossref]
23- Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC Trends in Analytical Chemistry. 2020;123:115759 [Crossref]
24- Ali A, Madni A, Shah H, Jamshaid T, Jan N, Khan S, Khan M, Mahmood M, Raza K. Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma. PLoS ONE. 2023;18(2):e0281004 [Crossref]
25- Sridhar K, Inbaraj B, Chen B. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants. 2021;10(5):713 [Crossref]
26- Rasouliyan F, Eskandani M, Jaymand M, Akbari Nakhjavani S, Farahzadi R, Vandghanooni S, Eskandani M. Preparation, physicochemical characterization, and anti-proliferative properties of Lawsone-loaded solid lipid nanoparticles. Chemistry and Physics of Lipids. 2021;239:105123 [Crossref]
27- Di Sano C, Lazzara V, Durante M, D’Anna C, Bonura A, Dino P, Uasuf C, Pace E, Lenucci M, Bruno A. The Protective Anticancer Effect of Natural Lycopene Supercritical CO2 Watermelon Extracts in Adenocarcinoma Lung Cancer Cells. Antioxidants. 2022;11(6):1150 [Crossref]
28- Rashidi Z, Bagheri Marandi G, Taghvay Nakhjiri M. Carboxymethyl cellulose-based nanocomposite hydrogel grafted with vinylic comonomers: synthesis, swelling behavior and drug delivery investigation. Journal of Macromolecular Science, Part A. 2022;59(6):421 [Crossref]
29- Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. International Journal of Biological Macromolecules. 2020;147:706 [Crossref]
30- de Andrades E, da Costa J, de Lima Neto F, de Araujo A, de Oliveira Silva Ribeiro F, Vasconcelos A, de Jesus Oliveira A, Sobrinho J, de Almeida M, Carvalho A, Dias J, Silva I, Albuquerque P, Pereira I, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite J, da Silva D. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. International Journal of Biological Macromolecules. 2021;191:1026 [Crossref]
31- Vasconcelos A, Valim M, Amorim A, do Amaral C, de Almeida M, Borges T, Socodato R, Portugal C, Brand G, Mattos J, Relvas J, Plácido A, Eaton P, Ramos D, Kückelhaus S, Leite J. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Research International. 2020;136:109548 [Crossref]
32- Chen J, Hu L. Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends. Food Eng Rev. 2020;12(1):14 [Crossref]
33- Binsuwaidan R, Sultan A, Negm W, Attallah N, Alqahtani M, Hussein I, Shaldam M, El-Sherbeni S, Elekhnawy E. Bilosomes as Nanoplatform for Oral Delivery and Modulated In Vivo Antimicrobial Activity of Lycopene. Pharmaceuticals. 2022;15(9):1043 [Crossref]
34- Schjoerring-Thyssen J, Olsen K, Koehler K, Jouenne E, Rousseau D, Andersen M. Morphology and Structure of Solid Lipid Nanoparticles Loaded with High Concentrations of β-Carotene. J Agric Food Chem. 2019;67(44):12273 [Crossref]
35- Trapani A, Esteban M, Curci F, Manno D, Serra A, Fracchiolla G, Espinosa-Ruiz C, Castellani S, Conese M. Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture. Molecules. 2022;27(2):344 [Crossref]
36- Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids and Surfaces B: Biointerfaces. 2024;233:113608 [Crossref]
37- Cassani L, Marcovich N, Gomez-Zavaglia A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Research International. 2022;152:110924 [Crossref]
38- Kothapalli P, Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review. Therapeutic Delivery. 2024;15(2):135 [Crossref]
39- Dong H, Wang S, Fu C, Sun Y, Wei T, Ren D, Wang Q. Sodium alginate and chitosan co-modified fucoxanthin liposomes: preparation, bioaccessibility and antioxidant activity. Journal of Microencapsulation. 2023;40(8):649 [Crossref]
40- Vandghanooni S, Eskandani M, Barar J, Omidi Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. European Journal of Pharmaceutical Sciences. 2018;117:301 [Crossref]
41- More S, Wadhokar A, Bedjawalge R. A Review on Solid Lipid Nanoparticles as Nano Drug Delivery Transporters. CNANO. 2024;20(5):644 [Crossref]
42- Hamishehkar H, Bahadori M, Vandghanooni S, Eskandani M, Nakhlband A, Eskandani M. Preparation, characterization and anti-proliferative effects of sclareol-loaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. Journal of Drug Delivery Science and Technology. 2018;45:272 [Crossref]
43- Verardi A, Sangiorgio P, Lopresto C, Casella P, Errico S. Enhancing Carotenoids’ Efficacy by Using Chitosan-Based Delivery Systems. Nutraceuticals. 2023;3(3):451 [Crossref]
44- Carvalho G, Sábio R, Chorilli M. An Overview of Properties and Analytical Methods for Lycopene in Organic Nanocarriers. Critical Reviews in Analytical Chemistry. 2020;:1 [Crossref]
45- Nakhlband A, Eskandani M, Saeedi N, Ghafari S, Omidi Y, Barar J, Garjani A. Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: A study for cardioprotective effect. Colloids and Surfaces B: Biointerfaces. 2018;164:299 [Crossref]
46- Kusdemir B, Kozgus Guldu O, Yurt Kilcar A, Medine E. Preparation and in vitro investigation of prostate-specific membrane antigen targeted lycopene loaded niosomes on prostate cancer cells. International Journal of Pharmaceutics. 2023;640:123013 [Crossref]
47- Dutta R, Elhassan G, Devi T, Bhattacharjee B, Singh M, Jana B, Sahu S, Mazumder B, Sahu R, Khan J. Enhanced efficacy of β-carotene loaded solid lipid nanoparticles optimized and developed via central composite design on breast cancer cell lines. Heliyon. 2024;10(7):e28457 [Crossref]
48- Meenambal R, Srinivas Bharath M. Nanocarriers for effective nutraceutical delivery to the brain. Neurochemistry International. 2020;140:104851 [Crossref]
49- F, P, K. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules. 2019;24(21):3947 [Crossref]
50- Vandghanooni S, Rasoulian F, Eskandani M, Akbari Nakhjavani S, Eskandani M. Acriflavine-loaded solid lipid nanoparticles: preparation, physicochemical characterization, and anti-proliferative properties. Pharmaceutical Development and Technology. 2021;26(9):934 [Crossref]
51- Tang C, Chen H, Dong J. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives. Applied Sciences. 2023;13(3):1726 [Crossref]