Logo-apb
Adv Pharm Bull. 2018;8(4): 551-563. doi: 10.15171/apb.2018.064
PMID: 30607328        PMCID: PMC6311635

Review Article

Potential of Peptide Nucleic Acids in Future Therapeutic Applications

Soheila Montazersaheb 1,2,3 * ORCID, Mohammad Saeid Hejazi 2,3 ORCID, Hojjatollah Nozad Charoudeh 4 ORCID

Cited by CrossRef: 44


1- MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. Molecular Therapy - Nucleic Acids. 2024;35(1):102086 [Crossref]
2- Musumeci D, Mokhir A, Roviello G. Synthesis and nucleic acid binding evaluation of a thyminyl l-diaminobutanoic acid-based nucleopeptide. Bioorganic Chemistry. 2020;100:103862 [Crossref]
3- Nandhini K, Noki S, Brasil E, Albericio F, de la Torre B. A safety-catch protecting group strategy compatible with Boc-chemistry for the synthesis of peptide nucleic acids (PNAs). Org Biomol Chem. 2023;21(40):8125 [Crossref]
4- Catani M, De Luca C, Medeiros Garcia Alcântara J, Manfredini N, Perrone D, Marchesi E, Weldon R, Müller‐Späth T, Cavazzini A, Morbidelli M, Sponchioni M. Oligonucleotides: Current Trends and Innovative Applications in the Synthesis, Characterization, and Purification. Biotechnology Journal. 2020;15(8) [Crossref]
5- De Fazio A, Misatziou D, Baker Y, Muskens O, Brown T, Kanaras A. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev. 2021;50(23):13410 [Crossref]
6- Schafer M, Browne H, Goldberg J, Greenberg D. Peptides and Antibiotic Therapy: Advances in Design and Delivery. Acc Chem Res. 2021;54(10):2377 [Crossref]
7- Cotta K, Ghosh S, Mehra S, Singh A. Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs. Microbiol Spectr. 2022;10(1) [Crossref]
8- Chhetri K, Sharma A, Naskar S, Maiti P. Nanoscale structures and mechanics of peptide nucleic acids. Nanoscale. 2022;14(17):6620 [Crossref]
9- Zhang Z, Conniot J, Amorim J, Jin Y, Prasad R, Yan X, Fan K, Conde J. Nucleic acid-based therapy for brain cancer: Challenges and strategies. Journal of Controlled Release. 2022;350:80 [Crossref]
10- Kulkarni P, Datta D, Ganesh K. Gemdimethyl Peptide Nucleic Acids (α/β/γ-gdm-PNA): E/Z-Rotamers Influence the Selectivity in the Formation of Parallel/Antiparallel gdm-PNA:DNA/RNA Duplexes. ACS Omega. 2022;7(44):40558 [Crossref]
11- McCollum C, Courtney C, O’Connor N, Aunins T, Ding Y, Jordan T, Rogers K, Brindley S, Brown J, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng. 2022;8(7):3087 [Crossref]
12- Pahlavan Y, Samadi N, Ansarin K, Khabbazi A. Phosphorylation Modulates Survivin Function in Behcet’s Disease. Adv Pharm Bull. 2020;10(2):278 [Crossref]
13- Lee J, Choi J, Choi Y, Kim K, Yang Y, Kim S, Yoon H, Kwon I. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. Journal of Controlled Release. 2022;351:713 [Crossref]
14- Cao M, Song W, Liang R, Teng L, Zhang M, Zhang J, Zhu L, van IJcken W. MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. International Journal of Genomics. 2021;2021:1 [Crossref]
15- Tsylents U, Siekierska I, Trylska J. Peptide nucleic acid conjugates and their antimicrobial applications—a mini-review. Eur Biophys J. 2023;52(6-7):533 [Crossref]
16- Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian A, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;71(4):246 [Crossref]
17- Dong B, Nie K, Shi H, Yao X, Chao L, Liang B, Liu Z. Synthesis and characterization of (R)-miniPEG-containing chiral γ-peptide nucleic acids using the Fmoc strategy. Tetrahedron Letters. 2019;60(21):1430 [Crossref]
18- Kulkarni P, Datta D, Ramabhadran R, Ganesh K. Gem-dimethyl peptide nucleic acid (α/β/γ-gdm-PNA) monomers: synthesis and the role of gdm-substituents in preferential stabilisation of Z/E-rotamers. Org Biomol Chem. 2021;19(29):6534 [Crossref]
19- Gupta M, Madhanagopal B, Datta D, Ganesh K. Structural Design and Synthesis of Bimodal PNA That Simultaneously Binds Two Complementary DNAs To Form Fused Double Duplexes. Org Lett. 2020;22(13):5255 [Crossref]
20- Gogate A, Belcourt J, Shah M, Wang A, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik S, Jin J, Bahal R, Rasmussen T, Manautou J, Zhong X, Guo G. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev. 2024;76(1):49 [Crossref]
21- Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorganic & Medicinal Chemistry Letters. 2020;30(9):127064 [Crossref]
22- Polak A, Machnik G, Bułdak Ł, Ruczyński J, Prochera K, Bujak O, Mucha P, Rekowski P, Okopień B. The Application of Peptide Nucleic Acids (PNA) in the Inhibition of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Gene Expression in a Cell-Free Transcription/Translation System. IJMS. 2024;25(3):1463 [Crossref]
23- Montazersaheb S, Kazemi M, Nabat E, Nielsen P, Hejazi M. Downregulation of TdT Expression through Splicing Modulation by Antisense Peptide Nucleic Acid (PNA). CPB. 2019;20(2):168 [Crossref]
24- Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella D. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. 2022;50(19):10839 [Crossref]
25- Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. Exploring miR-9 Involvement in Ciona intestinalis Neural Development Using Peptide Nucleic Acids. IJMS. 2020;21(6):2001 [Crossref]
26- Cesaro E, Falanga A, Catapano R, Greco F, Romano S, Borbone N, Pastore A, Marzano M, Chiurazzi F, D’Errico S, Piccialli G, Oliviero G, Costanzo P, Grosso M, Gibson S. Exploring a peptide nucleic acid-based antisense approach for CD5 targeting in chronic lymphocytic leukemia. PLoS ONE. 2022;17(3):e0266090 [Crossref]
27- Javanmard Z, Pourhajibagher M, Bahador A. Characteristics and Applications of Peptide Nucleic Acid in the Treatment of Infectious Diseases and the Effect of Antimicrobial Photodynamic Therapy on Treatment Effectiveness. IDDT. 2024;24(1) [Crossref]
28- Shai A, Galouk E, Miari R, Tareef H, Sammar M, Zeidan M, Rayan A, Falah M. Inhibiting mutant KRAS G12D gene expression using novel peptide nucleic acid‑based antisense: A potential new drug candidate for pancreatic cancer. Oncol Lett. 2022;23(4) [Crossref]
29- Riley R, Kashyap M, Billingsley M, White B, Alameh M, Bose S, Zoltick P, Li H, Zhang R, Cheng A, Weissman D, Peranteau W, Mitchell M. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv. 2021;7(3) [Crossref]
30- Lai Q, Dong B, Nie K, Shi H, Liang B, Liu Z. Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers. Aust J Chem. 2021;74(3):199 [Crossref]
31- Dhuri K, Pradeep S, Shi J, Anastasiadou E, Slack F, Gupta A, Zhong X, Bahal R. Simultaneous Targeting of Multiple oncomiRs with Phosphorothioate or PNA-Based Anti-miRs in Lymphoma Cell Lines. Pharm Res. 2022;39(11):2709 [Crossref]
32- French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Intl Journal of Cancer. 2021;148(12):2884 [Crossref]
33- Bhingardeve P, Jain P, Ganesh K. Molecular Assembly of Triplex of Duplexes from Homothyminyl-Homocytosinyl Cγ(S/R)-Bimodal Peptide Nucleic Acids with dA8/dG6 and the Cell Permeability of Bimodal Peptide Nucleic Acids. ACS Omega. 2021;6(30):19757 [Crossref]
34- Brodyagin N, Katkevics M, Kotikam V, Ryan C, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem. 2021;17:1641 [Crossref]
35- Martínez-Guitián M, Vázquez-Ucha J, Álvarez-Fraga L, Conde-Pérez K, Bou G, Poza M, Beceiro A. Antisense inhibition of lpxB gene expression in Acinetobacter baumannii by peptide–PNA conjugates and synergy with colistin. 2020;75(1):51 [Crossref]
36- Podlaski F, Cornwell S, Wong K, McKittrick B, Kim J, Jung D, Jeon Y, Jung K, Tolias P, Windsor W. Peptide Nucleic Acids Containing Cationic/Amino-Alkyl Modified Bases Promote Enhanced Hybridization Kinetics and Thermodynamics with Single-Strand DNA. ACS Omega. 2023;8(37):33426 [Crossref]
37- Newell G, Sabourin A, Montchamp J. Preparation of a clickable monomer compatible with automated PNA synthesis. Tetrahedron Letters. 2021;69:152987 [Crossref]
38- Li C, Zhang G, Mohapatra S, Callahan A, Loas A, Gómez‐Bombarelli R, Pentelute B. Machine Learning Guides Peptide Nucleic Acid Flow Synthesis and Sequence Design. Advanced Science. 2022;9(34) [Crossref]
39- Saiyed A, Vasavada A, Johar S. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Futur J Pharm Sci. 2022;8(1) [Crossref]
40- Dong B, Nie K, Shi H, Chao L, Ma M, Gao F, Liang B, Chen W, Long M, Liu Z. Film-Spotting chiral miniPEG-γPNA array for BRCA1 gene mutation detection. Biosensors and Bioelectronics. 2019;136:1 [Crossref]
41- Barman S, Ali M, Hasan E, Wehbe N, Alshareef H, Alsulaiman D. Smartphone-Interfaced Electrochemical Biosensor for microRNA Detection Based on Laser-Induced Graphene with π–π Stacked Peptide Nucleic Acid Probes. ACS Materials Lett. 2024;6(3):837 [Crossref]
42- Shiraj A, Ramabhadran R, Ganesh K. Aza-PNA: Engineering E-Rotamer Selectivity Directed by Intramolecular H-bonding. Org Lett. 2022;24(40):7421 [Crossref]
43- Bhingardeve P, Madhanagopal B, Ganesh K. Cγ(S/R)-Bimodal Peptide Nucleic Acids (Cγ-bm-PNA) Form Coupled Double Duplexes by Synchronous Binding to Two Complementary DNA Strands. J Org Chem. 2020;85(21):13680 [Crossref]
44- Nandhini K, Shaer D, Albericio F, de la Torre B. The challenge of peptide nucleic acid synthesis. Chem Soc Rev. 2023;52(8):2764 [Crossref]
45- Li C, Callahan A, Phadke K, Bellaire B, Farquhar C, Zhang G, Schissel C, Mijalis A, Hartrampf N, Loas A, Verhoeven D, Pentelute B. Automated Flow Synthesis of Peptide–PNA Conjugates. ACS Cent Sci. 2022;8(2):205 [Crossref]
46- Moccia M, Pascucci B, Saviano M, Cerasa M, Terzidis M, Chatgilialoglu C, Masi A. Advances in Nucleic Acid Research: Exploring the Potential of Oligonucleotides for Therapeutic Applications and Biological Studies. IJMS. 2023;25(1):146 [Crossref]