Logo-apb
Adv Pharm Bull. 2019;9(1): 159-173. doi: 10.15171/apb.2019.019
PMID: 31011570        PMCID: PMC6468236

Research Article

Stomach-Specific Drug Delivery of Clarithromycin Using aSemi Interpenetrating Polymeric Network Hydrogel Made ofMontmorillonite and Chitosan: Synthesis, Characterization and InVitro Drug Release Study

Yunes Panahi 1 ORCID, Afshin Gharekhani 2 ORCID, Hamed Hamishehkar 3 ORCID, Parvin Zakeri-Milani 4 ORCID, Hamed Gharekhani 3 * ORCID

Cited by CrossRef: 36


1- Li S, Chen Z, Wang J, Yan L, Chen T, Zeng Q. Fabrication and characterization of a novel semi-interpenetrating network hydrogel based on sodium carboxymethyl cellulose and poly(methacrylic acid) for oral insulin delivery. J Biomater Appl. 2020;35(1):3 [Crossref]
2- Kapusta O, Jarosz A, Stadnik K, Giannakoudakis D, Barczyński B, Barczak M. Antimicrobial Natural Hydrogels in Biomedicine: Properties, Applications, and Challenges—A Concise Review. IJMS. 2023;24(3):2191 [Crossref]
3- Feyisa Z, Gupta N, Edossa G, Sundaramurthy A, Kapoor A, Inki L. Fabrication of pH‐sensitive double cross‐linked sodium alginate/chitosan hydrogels for controlled release of amoxicillin. Polymer Engineering & Sci. 2023;63(8):2546 [Crossref]
4- Tipa C, Cidade M, Borges J, Costa L, Silva J, Soares P. Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. Nanomaterials. 2022;12(19):3308 [Crossref]
5- Wang S, Meng S, Zhou X, Gao Z, Piao M. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics. 2023;15(3):820 [Crossref]
6- Kazemi Heragh B, Javanshir S, Mahdavinia G, Naimi‐Jamal M. Development of Ph-Sensitive Biomaterial-Based Nanocomposite for Highly Controlled Drug Release. SSRN Journal. 2022; [Crossref]
7- Hwang H, Lee C. Nanoclay-Composite Hydrogels for Bone Tissue Engineering. Gels. 2024;10(8):513 [Crossref]
8- Dragan E, Dinu M. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. Reactive and Functional Polymers. 2020;146:104372 [Crossref]
9- Heragh B, Javanshir S, Mahdavinia G, Jamal M. Hydroxyapatite grafted chitosan/laponite RD hydrogel: Evaluation of the encapsulation capacity, pH-responsivity, and controlled release behavior. International Journal of Biological Macromolecules. 2021;190:351 [Crossref]
10- Grosso R, Benito E, Carbajo-Gordillo A, García-Martín M, Perez-Puyana V, Sánchez-Cid P, de-Paz M. Biodegradable Guar-Gum-Based Super-Porous Matrices for Gastroretentive Controlled Drug Release in the Treatment of Helicobacter pylori: A Proof of Concept. IJMS. 2023;24(3):2281 [Crossref]
11- Parın F. Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. 2023;9(3):697 [Crossref]
12- Rawat R, Chouhan R, Sadhu V, Sharma M. Clarithromycin-Loaded Submicron-Sized Carriers: Pharmacokinetics and Pharmacodynamic Evaluation. Materials. 2023;16(9):3593 [Crossref]
13- Kamankesh M, Yadegar A, Llopis‐Lorente A, Liu C, Haririan I, Aghdaei H, Shokrgozar M, Zali M, Miri A, Rad‐Malekshahi M, Hamblin M, Wacker M. Future Nanotechnology‐Based Strategies for Improved Management of Helicobacter pylori Infection. Small. 2024;20(3) [Crossref]
14- Chellathurai M, Chung L, Hilles A, Sofian Z, Singha S, Ghosal K, Mahmood S. Pharmaceutical chitosan hydrogels: A review on its design and applications. International Journal of Biological Macromolecules. 2024;280:135775 [Crossref]
15- Ajaz N, Abbas A, Afshan R, Irfan M, Khalid S, Asghar S, Munir M, Rizg W, Majrashi K, Alshehri S, Alissa M, Majrashi M, Bukhary D, Hussain G, Rehman F, Khan I. In Vitro and In Vivo Evaluation of Hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) Semi-Interpenetrating Matrices of Dexamethasone Sodium Phosphate. Pharmaceuticals. 2022;15(11):1399 [Crossref]
16- Damiri F, Salave S, Vitore J, Bachra Y, Jadhav R, Kommineni N, Karouach F, Paiva-Santos A, Varma R, Berrada M. Properties and valuable applications of superabsorbent polymers: a comprehensive review. Polym Bull. 2024;81(8):6671 [Crossref]
17- Manatunga D, Godakanda V, de Silva R, de Silva K. Recent developments in the use of organic–inorganic nanohybrids for drug delivery. WIREs Nanomed Nanobiotechnol. 2020;12(3) [Crossref]
18- Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opinion on Drug Delivery. 2021;18(6):695 [Crossref]
19- Saeedi M, Vahidi O, Moghbeli M, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb M, Webster T, Varma R, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. Journal of Controlled Release. 2022;350:175 [Crossref]
20- Heragh B, Javanshir S, Mahdavinia G, Naimi-Jamal M. Development of pH-sensitive biomaterial-based nanocomposite for highly controlled drug release. Results in Materials. 2022;16:100324 [Crossref]
21- Siddiqui S, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan M, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Critical Reviews in Food Science and Nutrition. 2023;63(33):12530 [Crossref]
22- Chyzy A, Tomczykowa M, Plonska-Brzezinska M. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials. 2020;13(1):188 [Crossref]
23- Li S, Qin T, Chen T, Wang J, Zeng Q. Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. Iran Polym J. 2021;30(4):343 [Crossref]
24- Nayak A, Hasnain M, Aminabhavi T. Drug delivery using interpenetrating polymeric networks of natural polymers: A recent update. Journal of Drug Delivery Science and Technology. 2021;66:102915 [Crossref]
25- Li D, Li P, Xu Y, Guo W, Li M, Chen M, Wang H, Lin H, Yi D. Progress in Montmorillonite Functionalized Artificial Bone Scaffolds: Intercalation and Interlocking, Nanoenhancement, and Controlled Drug Release. Journal of Nanomaterials. 2022;2022(1) [Crossref]
26- Dragan E, Dinu M, Ghiorghita C. Chitosan-Based Polyelectrolyte Complex Cryogels with Elasticity, Toughness and Delivery of Curcumin Engineered by Polyions Pair and Cryostructuration Steps. Gels. 2022;8(4):240 [Crossref]
27- Baravkar S, Lu Y, Masoud A, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine–Leucine–Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules. 2024;14(1):94 [Crossref]
28- Sharma V, Kapil D, Singh B. Fabrication of bacterial derived natural polysaccharide-based copolymer network hydrogels for use in drug delivery applications. Hybrid Advances. 2024;6:100263 [Crossref]
29- Zhao X, Li P, Zhu J, Xia Y, Ma J, Pu X, Wang Y, Leng F, Wang Y, Yang S, Ran F, Tang D, Zhang W. Polygonatum polysaccharide modified montmorillonite/chitosan/glycerophosphate composite hydrogel for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;71(15):1176 [Crossref]
30- Guarnizo-Herrero V, Torrado-Salmerón C, Torres Pabón N, Torrado Durán G, Morales J, Torrado-Santiago S. Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets. Polymers. 2021;13(16):2813 [Crossref]