Logo-apb
Adv Pharm Bull. 2019;9(2): 182-194. doi: 10.15171/apb.2019.022
PMID: 31380244        PMCID: PMC6664117

Review Article

Impact of Cultivation Condition and Media Content on Chlorella vulgaris Composition

Yunes Panahi 1 ORCID, Ahmad Yari Khosroushahi 2,3 ORCID, Amirhossein Sahebkar 4 ORCID, Hamid Reza Heidari 2,5 * ORCID

Cited by CrossRef: 32


1- Ferreira G, Ríos Pinto L, Maciel Filho R, Fregolente L. Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Bioresource Technology. 2021;342:125949 [Crossref]
2- Ummalyma S, Singh A. Biomass production and phycoremediation of microalgae cultivated in polluted river water. Bioresource Technology. 2022;351:126948 [Crossref]
3- Rakhmanov S, Turaev K, Madalieva D, Tursunov O. Implementation of mathematical models and algorithms in task control of the microalgae cultivation processes. E3S Web Conf. 2023;377:03010 [Crossref]
4- Bala S, Garg D, Phutela U, Kaur M, Bhatia S. Oscillatoria sancta Cultivation Using Fruit and Vegetable Waste Formulated Media and Its Potential as a Functional Food: Assessment of Cultivation Optimization. Mol Biotechnol. 2023; [Crossref]
5- Devi A, Bajar S, Sihag P, Sheikh Z, Singh A, Kaur J, Bishnoi N, Pant D. A panoramic view of technological landscape for bioethanol production from various generations of feedstocks. Bioengineered. 2023;14(1):81 [Crossref]
6- Bayona-Morcillo P, Gómez-Serrano C, González-López C, Massa D, Jiménez-Becker S. Effect of the Application of Hydrolysate of Chlorella vulgaris Extracted by Different Techniques on the Growth of Pelargonium × hortorum. Plants. 2022;11(17):2308 [Crossref]
7- Ilyuchyk I, Zakharevich L, Nikandrov V. EFFECT OF Cr2(SO4)3 ON A STATUS OF CHLORELLA VULGARIS CULRURE CELLS UNDER THE DIFFERENT CONTENT OF NITROGEN SOURSE – KNO3 IN THE NUTRIENT MEDIUM. 2022;7(2):343 [Crossref]
8- Ahiahonu E, Anku W, Roopnarain A, Green E, Govender P, Serepa‐Dlamini M. Bioresource potential of Tetradesmus obliquusUJEA_AD: critical evaluation of biosequestration rate, biochemical and fatty acid composition in BG11 media. J of Chemical Tech & Biotech. 2022;97(3):689 [Crossref]
9- Eze C, Ogbonna I, Aoyagi H, Ogbonna J. Comparison of growth, protein and carotenoid contents of some freshwater microalgae and the effects of urea and cultivation in a photobioreactor with reflective broth circulation guide on Desmodesmus subspicatus LC172266. Braz J Chem Eng. 2022;39(1):23 [Crossref]
10- Ravi Kiran B, Venkata Mohan S. Photosynthetic transients in Chlorella sorokiniana during phycoremediation of dairy wastewater under distinct light intensities. Bioresource Technology. 2021;340:125593 [Crossref]
11- Kumar M, Sun Y, Rathour R, Pandey A, Thakur I, Tsang D. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of The Total Environment. 2020;716:137116 [Crossref]
12- Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. Bioresource Technology. 2022;343:126128 [Crossref]
13- Xie Z, Wu F, Lin W, Luo J. The utilization of photophosphorylation uncoupler to improve lipid production of Chlorella, a case study using transcriptome and functional gene expression analysis to reveal its mechanism. Biochemical Engineering Journal. 2022;178:108275 [Crossref]
14- Liang C, Lv H, Liu W, Wang Q, Yao X, Li X, Hu Z, Wang J, Zhu L, Wang J. Mechanism of the adverse outcome of Chlorella vulgaris exposure to diethyl phthalate: Water environmental health reflected by primary producer toxicity. Science of The Total Environment. 2024;912:168876 [Crossref]
15- Rushan N, Mat Yasin N, Mohd Said F, Ramesh N. Immobilised Chlorella vulgaris as An Alternative for The Enhancement of Microalgae Oil and Biodiesel Production. Bull Chem React Eng Catal. 2020;15(2):379 [Crossref]
16- Olanrewaju O, Shukor H, Guerrier G, Bagchi D, Aruoma O, Ismail S. The potential seaweed resources assessment: Its cultivation prospect and future biofuel feedstock. AJBPS. 2024;4:3 [Crossref]
17- Guo B, Yang B, Weil P, Zhang S, Hornung U, Dahmen N. The Effect of Dichloromethane on Product Separation during Continuous Hydrothermal Liquefaction of Chlorella vulgaris and Aqueous Product Recycling for Algae Cultivation. Energy Fuels. 2022;36(2):922 [Crossref]
18- Aguda R, Stelly C, Fonseca L, LeBoeuf S, Massiha S, Chistoserdov A, Holmes W, Hernandez R, Zappi M, Revellame E. Effect of macronutrient levels on Chlorella vulgaris cultivation for long duration spaceflights and space settlements. Acta Astronautica. 2023;206:206 [Crossref]
19- Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. Science of The Total Environment. 2022;838:156069 [Crossref]
20- Herbert H, Parkes R, Barone M, Picciotto S, Adamo G, Paterna A, Manno M, Bongiovanni A, Campion E, Touzet N. Effects of Cultivation Stress on the Glaucophyte Cyanophora paradoxa and Bioactive Potential in Human Cancer Cell Lines . Phycologia. 2024;:1 [Crossref]
21- Kassim M, Ramli S, Meng T. Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source. Preparative Biochemistry & Biotechnology. 2022;52(5):514 [Crossref]
22- HAJNAL-JAFARI T, SEMAN V, STAMENOV D, ĐURIĆ S. Effect of Chlorella vulgaris on Growth and Photosynthetic Pigment Content in Swiss Chard (Beta vulgaris L. subsp. cicla). 2020;69(2):235 [Crossref]
23- Fadhil S, Ismail Z. Influence of Light Color on Power Generation and Microalgae Growth in Photosynthetic Microbial Fuel Cell with Chlorella Vulgaris Microalgae as Bio-Cathode. Curr Microbiol. 2023;80(5) [Crossref]
24- Kim J, Chang K, Lee S, Jin E. Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395. IJMS. 2021;22(2):480 [Crossref]
25- Ilyuchyk I, Nikandrov V. Dynamics of a photosynthetic pigments level of the Chlorella vulgaris strain С 111 IBCE C-19 during the growth at the nutrien medium with manganese chloride addition. Vescì Akademìì navuk Belarusì Seryâ biâlagičnyh navuk. 2020;65(3):299 [Crossref]
26- Yong J, Chew K, Khoo K, Show P, Chang J. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances. 2021;47:107684 [Crossref]
27- Le T, Nguyen T. Potential of hospital wastewater treatment using locally isolated Chlorella sp. LH2 from cocoon wastewater. Bioresour Bioprocess. 2024;11(1) [Crossref]
28- Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods. 2024;13(5):725 [Crossref]
29- Bito T, Okumura E, Fujishima M, Watanabe F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients. 2020;12(9):2524 [Crossref]
30- Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. Environ Sci Pollut Res. 2021;28(37):51046 [Crossref]
31- Giwa A, Abuhantash F, Chalermthai B, Taher H. Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review. Sustainability. 2022;14(17):10759 [Crossref]
32- López-Sánchez A, Silva-Gálvez A, González-López M, Díaz-Vázquez D, Orozco-Nunnelly D, Novoa-Leiva I, González-Valdez J, Casillas-García L, Gradilla-Hernández M. Valorization of livestock waste through combined anaerobic digestion and microalgae-based treatment in México: A techno-economic analysis for distributed biogas generation, animal feed production, and carbon credits trading. Environmental Technology & Innovation. 2023;32:103321 [Crossref]
33- Yadav D, Yadav M, Rani P, Yadav A, Bhardwaj N, Bishnoi N, Singh A. Screening of best growth media for Chlorella vulgaris cultivation and biodiesel production . Biofuels. 2024;15(3):271 [Crossref]