Logo-apb
Adv Pharm Bull. 2020;10(2): 213-220. doi: 10.34172/apb.2020.025
PMID: 32373489        PMCID: PMC7191231

Research Article

Cupric Oxide Nanoparticles Induce Cellular Toxicity in Liver and Intestine Cell Lines

Mahmoud Abudayyak 1,2 * ORCID, Elif Guzel 3 ORCID, Gül Özhan 1 * ORCID

Cited by CrossRef: 21


1- Li J, Xi W, Tan S, Liu Y, Wu H, Liu Y, Cao A, Wang H. Effects of VO2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NanoImpact. 2021;24:100351 [Crossref]
2- Amina M, Al Musayeib N, Alterary S, F. El-Tohamy M, A. Alhwaiti S. Advanced polymeric metal/metal oxide bionanocomposite using seaweedLaurencia dendroideaextract for antiprotozoal, anticancer, and photocatalytic applications. 2023;11:e15004 [Crossref]
3- SAYGILI Y, YÜZBAŞIOĞLU D, ÜNAL F. Metal Oksit Nanopartiküllerin Genotoksik Etkileri. 2021;33(3):429 [Crossref]
4- Mahamuni-Badiger P, Dhanavade M. “Challenges and toxicity assessment of inorganic nanomaterials in biomedical applications: Current status and future roadmaps”. Journal of Drug Delivery Science and Technology. 2023;87:104806 [Crossref]
5- Abdollahi Z, Zare E, Salimi F, Goudarzi I, Tay F, Makvandi P. Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo. IJMS. 2021;22(5):2531 [Crossref]
6- Ahmad M, Khan M, Ahmad N, Parveen M, Shahzad K, Hasan A. Histotoxicity induced by copper oxide nanoparticles (CuO-NPs) on developing mice (Mus musculus). Food and Chemical Toxicology. 2024;184:114369 [Crossref]
7- Taherzadeh-Soureshjani P, Chehelgerdi M. Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer. Cancer Nano. 2020;11(1) [Crossref]
8- Suvarna V, Nair A, Mallya R, Khan T, Omri A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics. 2022;11(6):729 [Crossref]
9- Mavil-Guerrero E, Vazquez-Duhalt R, Juarez-Moreno K. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. Chemosphere. 2024;347:140713 [Crossref]
10- Lv D, Dai C, Wang M, Chen H, Guan Y. Self-emulsifying Transparent Nanoemulsion to Improve 9'-cis-Bixin Photo Stability in Aqueous Solution by Tween 20 and Lecithin. Food Biophysics. 2022;17(4):545 [Crossref]
11- Chen Y, Liu Z, Meng S, Shen Z, Shi H, Qiu J, Lin F, Zhang S, Kou Y. OsCERK1 Contributes to Cupric Oxide Nanoparticles Induced Phytotoxicity and Basal Resistance against Blast by Regulating the Anti-Oxidant System in Rice. JoF. 2022;9(1):36 [Crossref]
12- Ahamed M, Lateef R, Akhtar M, Rajanahalli P. Dietary Antioxidant Curcumin Mitigates CuO Nanoparticle-Induced Cytotoxicity through the Oxidative Stress Pathway in Human Placental Cells. Molecules. 2022;27(21):7378 [Crossref]
13- Abdel-Azeem A, Abdel-Rehiem E, Farghali A, Khidr F, Abdul-Hamid M. Comparative toxicological evaluations of novel forms nano-pesticides in liver and lung of albino rats. J Mol Histol. 2023;54(2):157 [Crossref]
14- Abu‑Serie M, Eltarahony M. Novel nanoformulated diethyldithiocarbamate complexes with biosynthesized or green chemosynthesized copper oxide nanoparticles: An in vitro comparative anticancer study. International Journal of Pharmaceutics. 2021;609:121149 [Crossref]
15- Naz S, Gul A, Zia M, Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol. 2023;107(4):1039 [Crossref]
16- H. Kadhim1 Z, Ahmed M, Şimşek I. Biologically synthesized Copper Nanoparticles from S. epidermidis on resistant S. aureus and cytotoxic assay. RB. 2023;8(CSS 1):1 [Crossref]
17- Anvar A, Ahari H, Ataee M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front Microbiol. 2021;12 [Crossref]
18- Ahamed M, Javed Akhtar M, Majeed Khan M, Alhadlaq H. Protocatechuic acid mitigates CuO nanoparticles-induced toxicity by strengthening the antioxidant defense system and suppressing apoptosis in liver cells. Journal of King Saud University - Science. 2023;35(3):102585 [Crossref]
19- Jarrar Q, Almansour M, Jarrar B, Al-Doaiss A, Shati A. Hepatic ultrastructural alterations induced by copper oxide nanoparticles: In vivo electron microscopy study. Toxicol Ind Health. 2023;39(11):651 [Crossref]
20- Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. Nanomaterials. 2020;10(11):2177 [Crossref]
21- Yang C, Merlin D. Challenges to Safe Nanomedicine Treatment. Nanomaterials. 2023;13(7):1171 [Crossref]
22- Mohammadipour A, Abudayyak M. Hippocampal toxicity of metal base nanoparticles. Is there a relationship between nanoparticles and psychiatric disorders?. 2022;37(1):35 [Crossref]
23- Büttner J, Schneider T, Westermann M, Glei M. Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. Toxics. 2022;10(3):130 [Crossref]
24- Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res. 2021;28(14):16962 [Crossref]