Logo-apb
Adv Pharm Bull. 2020;10(4): 502-511. doi: 10.34172/apb.2020.062
PMID: 33062601        PMCID: PMC7539318

Review Article

PCSK9: A Key Target for the Treatment of Cardiovascular Disease (CVD)

Saeideh Sobati 1,2, Amir Shakouri 1, Mahdi Edalati 3,4, Daryoush Mohammadnejad 1, Reza Parvan 5, Javad Masoumi 6, Jalal Abdolalizadeh 7,4 * ORCID

Cited by CrossRef: 9


1- Mc Auley M. Modeling cholesterol metabolism and atherosclerosis. WIREs Mechanisms of Disease. 2022;14(3) [Crossref]
2- Shakhtshneider E, Ivanoshchuk D, Ragino Y, Fishman V, Polonskaya Y, Kashtanova E, Chernyavsky A, Murashov I, Voevoda M. Analysis of differential expression of lipid metabolism genes in atherosclerotic plaques in patients with coronary atherosclerosis. SJCEM. 2022;36(4):156 [Crossref]
3- Mahboudi S, Moosavi-Nasab M, Kazemi B, Rahimpour A, Eskandari M, Mohammadian O, Shams F. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep. 2021;48(5):4405 [Crossref]
4- Mongiello P, Petti R, Ciaccia A, Grazia Morgese M, Lombardi R. Analysis of Adherence to anti-PCSK9 Antibody Therapy among Patients from Italy. CHDDT. 2023;23(2):111 [Crossref]
5- He C, Quan W, Zeng Y, Zhou H, You P, Li Z, Li Y, Lin L, Liu B, Liao D, Tuo Q. Construction of nicotinic acid curcumin nanoparticles and its Anti-atherosclerosis effect via PCSK9/LDL-R, ABCA1/Caveolin-1/LXR pathway. Materials & Design. 2023;229:111931 [Crossref]
6- Patel S, Guo M, Abdul Samad M, Howe K. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Front Cardiovasc Med. 2023;10 [Crossref]
7- Papotti B, Adorni M, Marchi C, Zimetti F, Ronda N, Panighel G, Lupo M, Vilella A, Giuliani D, Ferri N, Bernini F. PCSK9 Affects Astrocyte Cholesterol Metabolism and Reduces Neuron Cholesterol Supplying In Vitro: Potential Implications in Alzheimer’s Disease. IJMS. 2022;23(20):12192 [Crossref]
8- Arsh H, Manoj Kumar F, Simran F, Tamang S, Rehman M, Ahmed G, Khan M, Malik J, Mehmoodi A. Role of PCSK9 inhibition during the inflammatory stage of SARS-COV-2: an updated review. 2024;86(2):899 [Crossref]
9- Martinez L, Perret B, Genoux A. Update on proprotein convertase subtilisin/kexin type 9 inhibitors, lipoprotein(a) and cardiovascular risk. 2021;32(5):324 [Crossref]
10- Ouyang Z, Ma M, Zhang Z, Wu H, Xue Y, Jian Y, Yin K, Yu S, Zhao C, Guo W, Gu X. Targeted Degradation of PCSK9 In Vivo by Autophagy-Tethering Compounds. J Med Chem. 2024;67(1):433 [Crossref]
11- Sundararaman S, Döring Y, van der Vorst E. PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines. 2021;9(7):793 [Crossref]
12- Crooke S, Baker B, Crooke R, Liang X. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021;20(6):427 [Crossref]
13- Polak A, Machnik G, Bułdak Ł, Ruczyński J, Prochera K, Bujak O, Mucha P, Rekowski P, Okopień B. The Application of Peptide Nucleic Acids (PNA) in the Inhibition of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Gene Expression in a Cell-Free Transcription/Translation System. IJMS. 2024;25(3):1463 [Crossref]