Abstract
Purpose: The purpose of the present study was to improve the ocular delivery for ketorolac tromethamine (KT) used to treat inflammation of the eye.
Methods: Eudragit nanoparticles loaded with KT were prepared and incorporated in polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) films. Nanoparticles were characterized by Fourier transform-infrared (FT-IR), scanning electron microscopy (SEM). Physicochemical properties and encapsulation effciency were investigated for nanoparticles. Also, the inserts were evaluated for their physiochemical parameters like percentage moisture absorption, percentage moisture loss, thickness and folding endurance.
Results: Mean particle size and zeta potential were in range of 153.8-217 nm and (-10.8) - (-40.7) mV, respectively. The results show that the use of a surfactant has not led to any major change on drug loading. The loading increases with the amount of polymer. The insert had a thickness varying from 0.072 ± 0.0098 to 0.0865 ± 0.0035 mm. The thicknesses of the inserts and the folding endurance increased with the total polymer concentration. The physicochemical properties showed that the Eudragit® L-100 nanoparticles loaded PVA-HEC films could be an effective carrier for KT.
Conclusion: For the first time, inserts of Eudragit nanoparticles were successfully prepared for ophthalmic drug delivery system to prevent frequent drug administration and enhance patient compliance.