Soheil Mehrdadi
1* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
Abstract
Brain, predisposed to local and metastasized tumors, has always been the focus of oncological studies. Glioblastoma multiforme (GBM), the most common invasive primary tumor of the brain, is responsible for 4% of all cancer-related deaths worldwide. Despite novel technologies, the average survival rate is 2 years. Physiological barriers such as blood-brain barrier (BBB) prevent drug molecules penetration into brain. Most of the pharmaceuticals present in the market cannot infiltrate BBB to have their maximum efficacy and this in turn imposes a major challenge. This mini review discusses GBM and physiological and biological barriers for anticancer drug delivery, challenges for drug delivery across BBB, drug delivery strategies focusing on SLNs and NLCs and their medical applications in on-going clinical trials. Numerous nanomedicines with various characteristics have been introduced in the last decades to overcome the delivery challenge. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were introduced as oral drug delivery nanomedicines which can be encapsulated by both hydrophilic and lipophilic pharmaceutical compounds. Their biocompatibility, biodegradability, lower toxicity and side effects, enhanced bioavailability, solubility and permeability, prolonged half-life and stability and finally tissue-targeted drug delivery makes them unique among all.